1,167
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Ankle Sprains in Athletes: Current Epidemiological, Clinical and Imaging Trends

ORCID Icon, , , , & ORCID Icon
Pages 29-46 | Received 16 Nov 2022, Accepted 06 May 2023, Published online: 22 May 2023

References

  • Patel P, Russell TG. Ankle Radiographic Evaluation. Treasure Island (FL): StatPearls; 2021.
  • Holmer P, Sondergaard L, Konradsen L, Nielsen PT, Jorgensen LN. Epidemiology of sprains in the lateral ankle and foot. Foot Ankle Int. 1994;15(2):72–74. doi:10.1177/107110079401500204
  • Huch K, Kuettner KE, Dieppe P. Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum. 1997;26(4):667–674. doi:10.1016/S0049-0172(97)80002-9
  • Johnson VL, Giuffre BM, Hunter DJ. Osteoarthritis: what does imaging tell us about its etiology? Semin Musculoskelet Radiol. 2012;16(5):410–418. doi:10.1055/s-0032-1329894
  • Maffulli N, Longo UG, Kadakia A, Spiezia F. Achilles tendinopathy. Foot Ankle Surg. 2020;26(3):240–249. doi:10.1016/j.fas.2019.03.009
  • Dams OC, van den Akker-Scheek I, Diercks RL, Wendt KW, Zwerver J, Reininga IHF. Surveying the management of Achilles tendon ruptures in the Netherlands: lack of consensus and need for treatment guidelines. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2754–2764. doi:10.1007/s00167-018-5049-5
  • Jackson LT, Dunaway LJ, Lundeen GA. Acute tears of the tibialis posterior tendon following ankle sprain. Foot Ankle Int. 2017;38(7):752–759. doi:10.1177/1071100717701686
  • Dams OC, Reininga IHF, Gielen JL, van den Akker-Scheek I, Zwerver J. Imaging modalities in the diagnosis and monitoring of Achilles tendon ruptures: a systematic review. Injury. 2017;48(11):2383–2399. doi:10.1016/j.injury.2017.09.013
  • Schweitzer ME, Karasick D. MR imaging of disorders of the Achilles tendon. AJR Am J Roentgenol. 2000;175(3):613–625. doi:10.2214/ajr.175.3.1750613
  • Mengiardi B, Pinto C, Zanetti M. Spring ligament complex and posterior tibial tendon: MR anatomy and findings in acquired adult flatfoot deformity. Semin Musculoskelet Radiol. 2016;20(1):104–115. doi:10.1055/s-0036-1580616
  • Choo HJ, Lee SJ, Kim DW, Jeong HW, Gwak H. Multibanded anterior talofibular ligaments in normal ankles and sprained ankles using 3D isotropic proton density-weighted fast spin-echo MRI sequence. AJR Am J Roentgenol. 2014;202(1):W87–94. doi:10.2214/AJR.13.10727
  • Mengiardi B, Pinto C, Zanetti M. Medial collateral ligament complex of the ankle: MR imaging anatomy and findings in medial instability. Semin Musculoskelet Radiol. 2016;20(1):91–103. doi:10.1055/s-0036-1580617
  • Lee S, Lin J, Hamid KS, Bohl DD. Deltoid ligament rupture in ankle fracture: diagnosis and management. J Am Acad Orthop Surg. 2019;27(14):e648–e658. doi:10.5435/JAAOS-D-18-00198
  • Subhas N, Vinson EN, Cothran RL, Santangelo JR, Nunley JA, Helms CA. MRI appearance of surgically proven abnormal accessory anterior-inferior tibiofibular ligament (Bassett’s ligament). Skeletal Radiol. 2008;37(1):27–33. doi:10.1007/s00256-007-0390-7
  • Sharif B, Welck M, Saifuddin A. MRI of the distal tibiofibular joint. Skeletal Radiol. 2020;49(1):1–17. doi:10.1007/s00256-019-03260-7
  • Oae K, Takao M, Naito K, et al. Injury of the tibiofibular syndesmosis: value of MR imaging for diagnosis. Radiology. 2003;227(1):155–161. doi:10.1148/radiol.2271011865
  • Golano P, Vega J, de Leeuw PA, et al. Anatomy of the ankle ligaments: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2010;18(5):557–569. doi:10.1007/s00167-010-1100-x
  • Williams BT, Ahrberg AB, Goldsmith MT, et al. Ankle syndesmosis: a qualitative and quantitative anatomic analysis. Am J Sports Med. 2015;43(1):88–97. doi:10.1177/0363546514554911
  • Boonthathip M, Chen L, Trudell DJ, Resnick DL. Tibiofibular syndesmotic ligaments: MR arthrography in cadavers with anatomic correlation. Radiology. 2010;254(3):827–836. doi:10.1148/radiol.09090624
  • Lilyquist M, Shaw A, Latz K, Bogener J, Wentz B. Cadaveric analysis of the distal tibiofibular syndesmosis. Foot Ankle Int. 2016;37(8):882–890. doi:10.1177/1071100716643083
  • Halabchi F, Hassabi M. Acute ankle sprain in athletes: clinical aspects and algorithmic approach. World J Orthop. 2020;11(12):534–558. doi:10.5312/wjo.v11.i12.534
  • Mulcahey MK, Bernhardson AS, Murphy CP, et al. The epidemiology of ankle injuries identified at the National Football League Combine, 2009–2015. Orthop J Sports Med. 2018;6(7):2325967118786227. doi:10.1177/2325967118786227
  • Sharma S, Dhillon MS, Kumar P, Rajnish RK. Patterns and trends of foot and ankle injuries in Olympic athletes: a systematic review and meta-analysis. Indian J Orthop. 2020;54(3):294–307. doi:10.1007/s43465-020-00058-x
  • Fong DT, Man CY, Yung PS, Cheung SY, Chan KM. Sport-related ankle injuries attending an accident and emergency department. Injury. 2008;39(10):1222–1227. doi:10.1016/j.injury.2008.02.032
  • Scillia AJ, Pierce TP, Issa K, et al. Low ankle sprains: a current review of diagnosis and treatment. Surg Technol Int. 2017;30:411–414.
  • Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am. 2010;92(13):2279–2284. doi:10.2106/JBJS.I.01537
  • Junge A, Dvorak J. Injury surveillance in the World Football Tournaments 1998–2012. Br J Sports Med. 2013;47(12):782–788. doi:10.1136/bjsports-2013-092205
  • Nabhan D, Walden T, Street J, Linden H, Moreau B. Sports injury and illness epidemiology during the 2014 Youth Olympic Games: United States Olympic Team Surveillance. Br J Sports Med. 2016;50(11):688–693. doi:10.1136/bjsports-2015-095835
  • Heiss R, Guermazi A, Jarraya M, et al. Prevalence of MRI-detected ankle injuries in athletes in the Rio de Janeiro 2016 summer Olympics. Acad Radiol. 2019;26(12):1605–1617. doi:10.1016/j.acra.2019.02.001
  • Vuurberg G, Hoorntje A, Wink LM, et al. Diagnosis, treatment and prevention of ankle sprains: update of an evidence-based clinical guideline. Br J Sports Med. 2018;52(15):956. doi:10.1136/bjsports-2017-098106
  • Staats K, Sabeti-Aschraf M, Apprich S, et al. Preoperative MRI is helpful but not sufficient to detect associated lesions in patients with chronic ankle instability. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2103–2109. doi:10.1007/s00167-017-4567-x
  • Hintermann B, Boss A, Schafer D. Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med. 2002;30(3):402–409. doi:10.1177/03635465020300031601
  • Delahunt E, Bleakley CM, Bossard DS, et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium. Br J Sports Med. 2018;52(20):1304–1310. doi:10.1136/bjsports-2017-098885
  • Mollon B, Wasserstein D, Murphy GM, White LM, Theodoropoulos J. High ankle sprains in professional ice hockey players: prognosis and correlation between magnetic resonance imaging patterns of injury and return to play. Orthop J Sports Med. 2019;7(9):2325967119871578. doi:10.1177/2325967119871578
  • Holmes RD, Yan YY, Mallinson PI, Andrews GT, Munk PL, Ouellette HA. Imaging review of hockey-related lower extremity injuries. Semin Musculoskelet Radiol. 2022;26(1):13–27. doi:10.1055/s-0041-1731795
  • van Rijn RM, van Os AG, Bernsen RM, Luijsterburg PA, Koes BW, Bierma-Zeinstra SM. What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med. 2008;121(4):324–331 e326. doi:10.1016/j.amjmed.2007.11.018
  • Lai MWW, Sit RWS. Healing of complete tear of the anterior talofibular ligament and early ankle stabilization after autologous platelet rich plasma: a case report and literature review. Arch Bone Jt Surg. 2018;6(2):146–149.
  • Michels F, Pereira H, Calder J, et al. Searching for consensus in the approach to patients with chronic lateral ankle instability: ask the expert. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2095–2102. doi:10.1007/s00167-017-4556-0
  • Bosien WR, Staples OS, Russell SW. Residual disability following acute ankle sprains. J Bone Joint Surg Am. 1955;37-A(6):1237–1243. doi:10.2106/00004623-195537060-00011
  • Hadeed MM, Dempsey IJ, Tyrrell Burrus M, et al. Predictors of osteochondral lesions of the talus in patients undergoing Brostrom-Gould ankle ligament reconstruction. J Foot Ankle Surg. 2020;59(1):21–26. doi:10.1053/j.jfas.2018.05.006
  • Takao M, Uchio Y, Naito K, Fukazawa I, Ochi M. Arthroscopic assessment for intra-articular disorders in residual ankle disability after sprain. Am J Sports Med. 2005;33(5):686–692. doi:10.1177/0363546504270566
  • Bezuglov E, Khaitin V, Lazarev A, et al. Asymptomatic foot and ankle abnormalities in elite professional soccer players. Orthop J Sports Med. 2021;9(1):2325967120979994. doi:10.1177/2325967120979994
  • Weber MA, Wunnemann F, Jungmann PM, Kuni B, Rehnitz C. Modern cartilage imaging of the ankle. Rofo. 2017;189(10):945–956. doi:10.1055/s-0043-110861
  • Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM. Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int. 2007;28(2):154–161. doi:10.3113/FAI.2007.0154
  • Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238–246. doi:10.1007/s00167-009-0942-6
  • DeJong AF, Fish PN, Hertel J. Running behaviors, motivations, and injury risk during the COVID-19 pandemic: a survey of 1147 runners. PLoS One. 2021;16(2):e0246300. doi:10.1371/journal.pone.0246300
  • van Aert GJJ, van der Laan L, Boonman-de Winter LJM, et al. Effect of the COVID-19 pandemic during the first lockdown in the Netherlands on the number of trauma-related admissions, trauma severity and treatment: the results of a retrospective cohort study in a level 2 trauma centre. BMJ Open. 2021;11(2):e045015. doi:10.1136/bmjopen-2020-045015
  • Lim MA, Mulyadi Ridia KG, Pranata R. Epidemiological pattern of orthopaedic fracture during the COVID-19 pandemic: a systematic review and meta-analysis. J Clin Orthop Trauma. 2021;16:16–23. doi:10.1016/j.jcot.2020.12.028
  • Nia A, Popp D, Diendorfer C, et al. Impact of lockdown during the COVID-19 pandemic on number of patients and patterns of injuries at a level I trauma center. Wien Klin Wochenschr. 2021;133:336–343. doi:10.1007/s00508-021-01824-z
  • Bazett-Jones DM, Garcia MC, Taylor-Haas JA, et al. Impact of COVID-19 social distancing restrictions on training habits, injury, and care seeking behavior in youth long-distance runners. Front Sports Act Living. 2020;2:586141. doi:10.3389/fspor.2020.586141
  • Sephton BM, Mahapatra P, Shenouda M, et al; The effect of COVID-19 on a Major Trauma Network. An analysis of mechanism of injury pattern, referral load and operative case-mix. Injury. 2021;52(3):395–401. doi:10.1016/j.injury.2021.02.035
  • Wenning M, Gehring D, Lange T, et al. Clinical evaluation of manual stress testing, stress ultrasound and 3D stress MRI in chronic mechanical ankle instability. BMC Musculoskelet Disord. 2021;22(1):198. doi:10.1186/s12891-021-03998-z
  • Beckenkamp PR, Lin CC, Macaskill P, Michaleff ZA, Maher CG, Moseley AM. Diagnostic accuracy of the Ottawa Ankle and Midfoot Rules: a systematic review with meta-analysis. Br J Sports Med. 2017;51(6):504–510. doi:10.1136/bjsports-2016-096858
  • Lehtola R, Leskela HV, Flinkkila T, et al. Suture button versus syndesmosis screw fixation in pronation-external rotation ankle fractures: a minimum 6-year follow-up of a randomised controlled trial. Injury. 2021;52:3143–3149. doi:10.1016/j.injury.2021.06.025
  • Brandenburg LS, Siegel M, Neubauer J, Merz J, Bode G, Kuhle J. Measuring standing hindfoot alignment: reliability of different approaches in conventional x-ray and cone-beam CT. Arch Orthop Trauma Surg. 2021;142:3035–3043. doi:10.1007/s00402-021-03904-1
  • Naqvi GA, Cunningham P, Lynch B, Galvin R, Awan N. Fixation of ankle syndesmotic injuries: comparison of tightrope fixation and syndesmotic screw fixation for accuracy of syndesmotic reduction. Am J Sports Med. 2012;40(12):2828–2835. doi:10.1177/0363546512461480
  • Forschner PF, Beitzel K, Imhoff AB, et al. Five-year outcomes after treatment for acute instability of the tibiofibular syndesmosis using a suture-button fixation system. Orthop J Sports Med. 2017;5(4):2325967117702854. doi:10.1177/2325967117702854
  • Rodrigues JC, Santos ALG, Prado MP, et al. Comparative CT with stress manoeuvres for diagnosing distal isolated tibiofibular syndesmotic injury in acute ankle sprain: a protocol for an accuracy- test prospective study. BMJ Open. 2020;10(9):e037239. doi:10.1136/bmjopen-2020-037239
  • Vetter SY, Euler J, Beisemann N, et al. Validation of radiological reduction criteria with intraoperative cone beam CT in unstable syndesmotic injuries. Eur J Trauma Emerg Surg. 2021;47(4):897–903. doi:10.1007/s00068-020-01299-z
  • Rammelt S, Zwipp H, Grass R. Injuries to the distal tibiofibular syndesmosis: an evidence-based approach to acute and chronic lesions. Foot Ankle Clin. 2008;13(4):611–633, vii–viii. doi:10.1016/j.fcl.2008.08.001
  • Patel S, Malhotra K, Cullen NP, Singh D, Goldberg AJ, Welck MJ. Defining reference values for the normal tibiofibular syndesmosis in adults using weight-bearing CT. Bone Joint J. 2019;101-B(3):348–352. doi:10.1302/0301-620X.101B3.BJJ-2018-0829.R1
  • Hickle J, Walstra F, Duggan P, Ouellette H, Munk P, Mallinson P. Dual-energy CT characterization of winter sports injuries. Br J Radiol. 2020;93(1106):20190620. doi:10.1259/bjr.20190620
  • Do TD, Sawall S, Heinze S, et al. A semi-automated quantitative comparison of metal artifact reduction in photon-counting computed tomography by energy-selective thresholding. Sci Rep. 2020;10(1):21099. doi:10.1038/s41598-020-77904-3
  • Hsieh SS, Leng S, Rajendran K, Tao S, McCollough CH. Photon counting CT: clinical applications and future developments. IEEE Trans Radiat Plasma Med Sci. 2021;5(4):441–452. doi:10.1109/TRPMS.2020.3020212
  • Foti G, Guerriero M, Faccioli N, et al. Identification of bone marrow edema around the ankle joint in non-traumatic patients: diagnostic accuracy of dual-energy computed tomography. Clin Imaging. 2021;69:341–348. doi:10.1016/j.clinimag.2020.09.013
  • Foti G, Catania M, Caia S, et al. Identification of bone marrow edema of the ankle: diagnostic accuracy of dual-energy CT in comparison with MRI. Radiol Med. 2019;124(10):1028–1036. doi:10.1007/s11547-019-01062-4
  • Allahabadi S, Amendola A, Lau BC. Optimizing return to play for common and controversial foot and ankle sports injuries. JBJS Rev. 2020;8(12):e20.00067. doi:10.2106/JBJS.RVW.20.00067
  • Gersing AS, Schwaiger BJ, Wortler K, Jungmann PM. Dezidierte Knorpelbildgebung zur Detektion von Knorpelverletzungen und osteochondralen Läsionen [Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions]. Radiologe. 2018;58(5):422–432. German. doi:10.1007/s00117-017-0348-2
  • Hermans JJ, Beumer A, Hop WC, Moonen AF, Ginai AZ. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane. Skeletal Radiol. 2012;41(2):193–202. doi:10.1007/s00256-011-1179-2
  • Duc SR, Mengiardi B, Pfirrmann CW, Hodler J, Zanetti M. Improved visualization of collateral ligaments of the ankle: multiplanar reconstructions based on standard 2D turbo spin-echo MR images. Eur Radiol. 2007;17(5):1162–1171. doi:10.1007/s00330-006-0427-7
  • Kim M, Choi YS, Jeong MS, et al. Comprehensive assessment of ankle syndesmosis injury using 3D isotropic turbo spin-echo sequences: diagnostic performance compared with that of conventional and oblique 3-T MRI. AJR Am J Roentgenol. 2017;208(4):827–833. doi:10.2214/AJR.16.16985
  • Randell M, Marsland D, Ballard E, Forster B, Lutz M. MRI for high ankle sprains with an unstable syndesmosis: posterior malleolus bone oedema is common and time to scan matters. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2890–2897. doi:10.1007/s00167-019-05581-5
  • Theysohn JM, Kraff O, Maderwald S, et al. MRI of the ankle joint in healthy non-athletes and in marathon runners: image quality issues at 7.0 T compared to 1.5 T. Skeletal Radiol. 2013;42(2):261–267. doi:10.1007/s00256-012-1454-x
  • Kirschke JS, Braun S, Baum T, et al. Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. Biomed Res Int. 2016;2016:3594253. doi:10.1155/2016/3594253
  • Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging. 2017;46(4):972–991. doi:10.1002/jmri.25708
  • de Cesar Netto C, Fonseca LF, Fritz B, et al. Metal artifact reduction MRI of total ankle arthroplasty implants. Eur Radiol. 2018;28(5):2216–2227. doi:10.1007/s00330-017-5153-9
  • Jungmann PM, Ganter C, Schaeffeler CJ, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application. PLoS One. 2015;10(4):e0124922. doi:10.1371/journal.pone.0124922
  • Jungmann PM, Bensler S, Zingg P, Fritz B, Pfirrmann CW, Sutter R. Improved visualization of juxtaprosthetic tissue using metal artifact reduction magnetic resonance imaging: experimental and clinical optimization of compressed sensing SEMAC. Invest Radiol. 2019;54(1):23–31. doi:10.1097/RLI.0000000000000504
  • Baur OL, Den Harder JM, Hemke R, et al. The road to optimal acceleration of Dixon imaging and quantitative T2-mapping in the ankle using compressed sensing and parallel imaging. Eur J Radiol. 2020;132:109295. doi:10.1016/j.ejrad.2020.109295
  • Gersing AS, Bodden J, Neumann J, et al. Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing. Eur J Radiol. 2019;118:277–284. doi:10.1016/j.ejrad.2019.06.006
  • Hur ES, Bohl DD, Lee S. Lateral ligament instability: review of pathology and diagnosis. Curr Rev Musculoskelet Med. 2020;13(4):494–500. doi:10.1007/s12178-020-09641-z
  • Tan DW, Teh DJW, Chee YH. Accuracy of magnetic resonance imaging in diagnosing lateral ankle ligament injuries: a comparative study with surgical findings and timings of scans. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2017;7:15–20. doi:10.1016/j.asmart.2016.09.003
  • Liu W, Li H, Hua Y. Quantitative magnetic resonance imaging (MRI) analysis of anterior talofibular ligament in lateral chronic ankle instability ankles pre- and postoperatively. BMC Musculoskelet Disord. 2017;18(1):397. doi:10.1186/s12891-017-1758-z
  • Li HY, Li WL, Chen SY, Hua YH. Increased ATFL-PTFL angle could be an indirect MRI sign in diagnosis of chronic ATFL injury. Knee Surg Sports Traumatol Arthrosc. 2020;28(1):208–212. doi:10.1007/s00167-018-5252-4
  • Ahn J, Choi JG, Jeong BO. The signal intensity of preoperative magnetic resonance imaging has predictive value for determining the arthroscopic reparability of the anterior talofibular ligament. Knee Surg Sports Traumatol Arthrosc. 2021;29(5):1535–1543. doi:10.1007/s00167-020-06208-w
  • Li H, Hua Y, Feng S, Li H, Chen S. Lower signal intensity of the anterior talofibular ligament is associated with a higher rate of return to sport after ATFL repair for chronic lateral ankle instability. Am J Sports Med. 2019;47(10):2380–2385. doi:10.1177/0363546519858588
  • Li Q, Ma K, Tao H, et al. Clinical and magnetic resonance imaging assessment of anatomical lateral ankle ligament reconstruction: comparison of tendon allograft and autograft. Int Orthop. 2018;42(3):551–557. doi:10.1007/s00264-018-3802-5
  • Crema MD, Krivokapic B, Guermazi A, et al. MRI of ankle sprain: the association between joint effusion and structural injury severity in a large cohort of athletes. Eur Radiol. 2019;29(11):6336–6344. doi:10.1007/s00330-019-06156-1
  • Elias I, Raikin SM, Schweitzer ME, Besser MP, Morrison WB, Zoga AC. Osteochondral lesions of the distal tibial plafond: localization and morphologic characteristics with an anatomical grid. Foot Ankle Int. 2009;30(6):524–529. doi:10.3113/FAI.2009.0524
  • Boutin RD, Chang J, Bateni C, Giza E, Wisner ER, Yao L. The notch of Harty (pseudodefect of the tibial plafond): frequency and characteristic findings at MRI of the ankle. AJR Am J Roentgenol. 2015;205(2):358–363. doi:10.2214/AJR.14.14012
  • Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol. 2003;32(5):259–265. doi:10.1007/s00256-003-0628-y
  • Yasui Y, Hannon CP, Fraser EJ, et al. Lesion size measured on MRI does not accurately reflect arthroscopic measurement in talar osteochondral lesions. Orthop J Sports Med. 2019;7(2):2325967118825261. doi:10.1177/2325967118825261
  • Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988–1020. doi:10.2106/00004623-195941060-00002
  • Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7(1):101–104. doi:10.1016/0749-8063(91)90087-E
  • Nelson DW, DiPaola J, Colville M, Schmidgall J. Osteochondritis dissecans of the talus and knee: prospective comparison of MR and arthroscopic classifications. J Comput Assist Tomogr. 1990;14(5):804–808. doi:10.1097/00004728-199009000-00026
  • Korner D, Kohler P, Schroter S, et al. Pain in osteochondral lesions of the ankle - an investigation based on data from the German Cartilage Registry (KnorpelRegister DGOU). Z Orthop Unfall. 2018;156(2):160–167. doi:10.1055/s-0043-124597
  • Griffith JF, Lau DT, Yeung DK, Wong MW. High-resolution MR imaging of talar osteochondral lesions with new classification. Skeletal Radiol. 2012;41(4):387–399. doi:10.1007/s00256-011-1246-8
  • Szaro P, Geijer M, Solidakis N. Traumatic and non-traumatic bone marrow edema in ankle MRI: a pictorial essay. Insights Imaging. 2020;11(1):97. doi:10.1186/s13244-020-00900-8
  • van Ochten JM, de Vries AD, van Putte N, et al. Association between patient history and physical examination and osteoarthritis after ankle sprain. Int J Sports Med. 2017;38(9):717–724. doi:10.1055/s-0043-109554
  • Passon T, Germann C, Fritz B, Pfirrmann C, Sutter R. Bone marrow edema of the medioplantar talar head is associated with severe ligamentous injury in ankle sprain. Skeletal Radiol. 2022;51(10):1937–1946. doi:10.1007/s00256-022-04043-3
  • Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–190. doi:10.1016/j.joca.2003.11.003
  • Jungmann PM, Gersing AS, Woertler K, et al. Reliable semiquantitative whole-joint MRI score for the shoulder joint: the shoulder osteoarthritis severity (SOAS) score. J Magn Reson Imaging. 2019;49(7):e152–e163. doi:10.1002/jmri.26251
  • Neumann J, Zhang AL, Schwaiger BJ, et al. Validation of scoring Hip osteoarthritis with MRI (SHOMRI) scores using Hip arthroscopy as a standard of reference. Eur Radiol. 2019;29(2):578–587. doi:10.1007/s00330-018-5623-8
  • Schmal H, Pilz IH, Henkelmann R, Salzmann GM, Sudkamp NP, Niemeyer P. Association between intraarticular cytokine levels and clinical parameters of osteochondritis dissecans in the ankle. BMC Musculoskelet Disord. 2014;15:169. doi:10.1186/1471-2474-15-169
  • Dunn A. The pre-signing medical examination: the radiologists’ role. Eur J Radiol. 2019;118:239–244. doi:10.1016/j.ejrad.2019.07.017
  • Behzadi C, Maas KJ, Welsch G, et al. Quantitative T2 * relaxation time analysis of articular cartilage of the tibiotalar joint in professional football players and healthy volunteers at 3T MRI. J Magn Reson Imaging. 2018;47(2):372–379. doi:10.1002/jmri.25757
  • Kim HK, Mirjalili A, Doyle A, Fernandez J. Tibiotalar cartilage stress corresponds to T2 mapping: application to barefoot running in novice and marathon-experienced runners. Comput Methods Biomech Biomed Engin. 2019;22(14):1153–1161. doi:10.1080/10255842.2019.1645133
  • Hu Y, Tao H, Qiao Y, et al. Evaluation of the talar cartilage in chronic lateral ankle instability with lateral ligament injury using biochemical T2* mapping: correlation with clinical symptoms. Acad Radiol. 2018;25(11):1415–1421. doi:10.1016/j.acra.2018.01.021
  • Kim HS, Yoon YC, Sung KS, Kim MJ, Ahn S. Comparison of T2 relaxation values in subtalar cartilage between patients with lateral instability of the ankle joint and healthy volunteers. Eur Radiol. 2018;28(10):4151–4162. doi:10.1007/s00330-018-5390-6
  • Park SY, Yoon YC, Cha JG, Sung KS. T2 relaxation values of the talar trochlear articular cartilage: comparison between patients with lateral instability of the ankle joint and healthy volunteers. AJR Am J Roentgenol. 2016;206(1):136–143. doi:10.2214/AJR.15.14364
  • Tao H, Hu Y, Qiao Y, et al. T2 -Mapping evaluation of early cartilage alteration of talus for chronic lateral ankle instability with isolated anterior talofibular ligament tear or combined with calcaneofibular ligament tear. J Magn Reson Imaging. 2018;47(1):69–77. doi:10.1002/jmri.25745
  • Tao H, Hu Y, Lu R, et al. Impact of chronic lateral ankle instability with lateral collateral ligament injuries on biochemical alterations in the cartilage of the subtalar and midtarsal joints based on MRI T2 mapping. Korean J Radiol. 2021;22(3):384–394. doi:10.3348/kjr.2020.0021
  • Rehnitz C, Kuni B, Wuennemann F, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: indicators of clinical outcomes. J Magn Reson Imaging. 2017;46(6):1601–1610. doi:10.1002/jmri.25731
  • Hu Y, Zhang Y, Li Q, et al. Magnetic resonance imaging T2* mapping of the talar dome and subtalar joint cartilage 3 years after anterior talofibular ligament repair or reconstruction in chronic lateral ankle instability. Am J Sports Med. 2021;49(3):737–746. doi:10.1177/0363546520982240
  • Jerban S, Chang DG, Ma Y, Jang H, Chang EY, Du J. An update in qualitative imaging of bone using ultrashort echo time magnetic resonance. Front Endocrinol (Lausanne). 2020;11:555756. doi:10.3389/fendo.2020.555756
  • Gersing AS, Pfeiffer D, Kopp FK, et al. Evaluation of MR-derived CT-like images and simulated radiographs compared to conventional radiography in patients with benign and malignant bone tumors. Eur Radiol. 2019;29(1):13–21. doi:10.1007/s00330-018-5450-y
  • Nordeck SM, Koerper CE, Adler A, et al. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI. Skeletal Radiol. 2017;46(5):651–664. doi:10.1007/s00256-017-2596-7
  • Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging. 2015;41(4):870–883. doi:10.1002/jmri.24713
  • Schwaiger BJ, Schneider C, Kronthaler S, et al. CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol. 2021;31(7):4680–4689. doi:10.1007/s00330-020-07597-9
  • Lu X, Jerban S, Wan L, et al. Three-dimensional ultrashort echo time imaging with tricomponent analysis for human cortical bone. Magn Reson Med. 2019;82(1):348–355. doi:10.1002/mrm.27718
  • Siriwanarangsun P, Bae WC, Statum S, Chung CB. Advanced MRI techniques for the ankle. AJR Am J Roentgenol. 2017;209(3):511–524. doi:10.2214/AJR.17.18057
  • Wiesinger F, Sacolick LI, Menini A, et al. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75(1):107–114. doi:10.1002/mrm.25545
  • Breighner RE, Bogner EA, Lee SC, Koff MF, Potter HG. Evaluation of osseous morphology of the hip using zero echo time magnetic resonance imaging. Am J Sports Med. 2019;47(14):3460–3468. doi:10.1177/0363546519878170
  • Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging. Radiology. 2018;286(3):960–966. doi:10.1148/radiol.2017170906
  • Larson PE, Han M, Krug R, et al. Ultrashort echo time and zero echo time MRI at 7T. MAGMA. 2016;29(3):359–370. doi:10.1007/s10334-015-0509-0
  • Sandberg JK, Young VA, Yuan J, Hargreaves BA, Wishah F, Vasanawala SS. Zero echo time pediatric musculoskeletal magnetic resonance imaging: initial experience. Pediatr Radiol. 2021;51:2549–2560. doi:10.1007/s00247-021-05125-5
  • de Mello RAF, Ma YJ, Ashir A, et al. Three-dimensional zero echo time magnetic resonance imaging versus 3-dimensional computed tomography for glenoid bone assessment. Arthroscopy. 2020;36(9):2391–2400. doi:10.1016/j.arthro.2020.05.042
  • Baltes TPA, Arnaiz J, Geertsema L, et al. Diagnostic value of ultrasonography in acute lateral and syndesmotic ligamentous ankle injuries. Eur Radiol. 2021;31(4):2610–2620. doi:10.1007/s00330-020-07305-7
  • Fritz B, Fritz J. MR imaging-ultrasonography correlation of acute and chronic foot and ankle conditions. Magn Reson Imaging Clin N Am. 2023;31(2):321–335. doi:10.1016/j.mric.2023.01.009
  • Ergun T, Peker A, Aybay MN, Turan K, Muratoglu OG, Cabuk H. Ultrasonography view for acute ankle injury: comparison of ultrasonography and magnetic resonance imaging. Arch Orthop Trauma Surg. 2023;143(3):1531–1536. doi:10.1007/s00402-022-04553-8
  • Kaminski TW, Hertel J, Amendola N, et al. National Athletic Trainers’ Association position statement: conservative management and prevention of ankle sprains in athletes. J Athl Train. 2013;48(4):528–545. doi:10.4085/1062-6050-48.4.02
  • Biz C, Nicoletti P, Tomasin M, Bragazzi NL, Di Rubbo G, Ruggieri P. Is kinesio taping effective for sport performance and ankle function of athletes with Chronic Ankle Instability (CAI)? A systematic review and meta-analysis. Medicina. 2022;58(5):210.
  • Stenquist DS, Ye MY, Kwon JY. Acute and chronic syndesmotic instability: role of surgical stabilization. Clin Sports Med. 2020;39(4):745–771. doi:10.1016/j.csm.2020.06.002
  • Kim SW, Jung HG, Lee JS. Ligament stabilization improved clinical and radiographic outcomes for individuals with chronic ankle instability and medial ankle osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2020;28(10):3294–3300. doi:10.1007/s00167-020-05845-5
  • Park S, Kim T, Lee M, Park Y. Absence of ATFL remnant does not affect the clinical outcomes of the modified brostrom operation for chronic ankle instability. Knee Surg Sports Traumatol Arthrosc. 2020;28(1):213–220. doi:10.1007/s00167-019-05464-9
  • Li H, Hua Y, Li H, Ma K, Li S, Chen S. Activity level and function 2 years after anterior talofibular ligament repair: a comparison between arthroscopic repair and open repair procedures. Am J Sports Med. 2017;45(9):2044–2051. doi:10.1177/0363546517698675
  • Li H, Zhao Y, Hua Y, Li Q, Li H, Chen S. Knotless anchor repair produced similarly favourable outcomes as knot anchor repair for anterior talofibular ligament repair. Knee Surg Sports Traumatol Arthrosc. 2020;28(12):3987–3993. doi:10.1007/s00167-020-05998-3
  • Li H, Hua Y, Li H, Chen S. Anterior talofibular ligament (ATFL) repair using two suture anchors produced better functional outcomes than using one suture anchor for the treatment of chronic lateral ankle instability. Knee Surg Sports Traumatol Arthrosc. 2020;28(1):221–226. doi:10.1007/s00167-019-05550-y
  • Li H, Hua Y, Li H, Chen S. Anatomical reconstruction produced similarly favorable outcomes as repair procedures for the treatment of chronic lateral ankle instability at long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2020;28(10):3324–3329. doi:10.1007/s00167-018-5176-z
  • Seo SG, Kim JS, Seo DK, Kim YK, Lee SH, Lee HS. Osteochondral lesions of the talus. Acta Orthop. 2018;89(4):462–467. doi:10.1080/17453674.2018.1460777
  • Vannini F, Costa GG, Caravelli S, Pagliazzi G, Mosca M. Treatment of osteochondral lesions of the talus in athletes: what is the evidence? Joints. 2016;4(2):111–120. doi:10.11138/jts/2016.4.2.111
  • Rikken QGH, Kerkhoffs G. Osteochondral lesions of the talus: an individualized treatment paradigm from the Amsterdam perspective. Foot Ankle Clin. 2021;26(1):121–136. doi:10.1016/j.fcl.2020.10.002
  • O’Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med. 2010;38(2):392–404. doi:10.1177/0363546509336336
  • Shimozono Y, Hurley ET, Myerson CL, Kennedy JG. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3055–3062. doi:10.1007/s00167-018-4917-3
  • Choi GW, Choi WJ, Youn HK, Park YJ, Lee JW. Osteochondral lesions of the talus: are there any differences between osteochondral and chondral types? Am J Sports Med. 2013;41(3):504–510. doi:10.1177/0363546512472976
  • Roth KE, Ossendorff R, Klos K, Simons P, Drees P, Salzmann GM. Arthroscopic minced cartilage implantation for chondral lesions at the talus: a technical note. Arthrosc Tech. 2021;10(4):e1149–e1154. doi:10.1016/j.eats.2021.01.006
  • Ruther H, Seif Amir Hosseini A, Frosch S, et al. Refixation von osteochondralen Fragmenten mit resorbierbaren Polylactid-Implantaten [Refixation of osteochondral fragments with resorbable polylactid implants: long-term clincal and MRI results]. Unfallchirurg. 2020;123(10):797–806. German. doi:10.1007/s00113-020-00798-3
  • Gottschalk O, Altenberger S, Baumbach S, et al. Functional medium-term results after autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a 5-year prospective cohort study. J Foot Ankle Surg. 2017;56(5):930–936. doi:10.1053/j.jfas.2017.05.002
  • Shimozono Y, Donders JCE, Yasui Y, et al. Effect of the containment type on clinical outcomes in osteochondral lesions of the talus treated with autologous osteochondral transplantation. Am J Sports Med. 2018;46(9):2096–2102. doi:10.1177/0363546518776659
  • Becher C, Malahias MA, Ali MM, Maffulli N, Thermann H. Arthroscopic microfracture vs. arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2731–2736. doi:10.1007/s00167-018-5278-7
  • Yang HY, Lee KB. Arthroscopic microfracture for osteochondral lesions of the talus: second-look arthroscopic and magnetic resonance analysis of cartilage repair tissue outcomes. J Bone Joint Surg Am. 2020;102(1):10–20. doi:10.2106/JBJS.19.00208
  • Weigelt L, Hartmann R, Pfirrmann C, Espinosa N, Wirth SH. Autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a clinical and radiological 2- to 8-year follow-up study. Am J Sports Med. 2019;47(7):1679–1686. doi:10.1177/0363546519841574
  • Usuelli FG, D’Ambrosi R, Maccario C, Boga M, de Girolamo L. All-arthroscopic AMIC((R)) (AT-AMIC((R))) technique with autologous bone graft for talar osteochondral defects: clinical and radiological results. Knee Surg Sports Traumatol Arthrosc. 2018;26(3):875–881. doi:10.1007/s00167-016-4318-4
  • Toale J, Shimozono Y, Mulvin C, Dahmen J, Kerkhoffs G, Kennedy JG. Midterm outcomes of bone marrow stimulation for primary osteochondral lesions of the talus: a systematic review. Orthop J Sports Med. 2019;7(10):2325967119879127. doi:10.1177/2325967119879127
  • Shimozono Y, Hurley ET, Yasui Y, Deyer TW, Kennedy JG. The presence and degree of bone marrow edema influence midterm clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2018;46(10):2503–2508. doi:10.1177/0363546518782701
  • Shimozono Y, Coale M, Yasui Y, O’Halloran A, Deyer TW, Kennedy JG. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis. Am J Sports Med. 2018;46(3):642–648. doi:10.1177/0363546517739606
  • Chan KW, Ferkel RD, Kern B, Chan SS, Applegate GR. Correlation of MRI appearance of autologous chondrocyte implantation in the ankle with clinical outcome. Cartilage. 2018;9(1):21–29. doi:10.1177/1947603516681131
  • Nguyen A, Ramasamy A, Walsh M, McMenemy L, Calder JDF. Autologous osteochondral transplantation for large osteochondral lesions of the talus is a viable option in an athletic population. Am J Sports Med. 2019;47(14):3429–3435. doi:10.1177/0363546519881420