232
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Exploration of Rhythmic Patterns of Gene Expression to Estimate the Time of Day a Bloodstain Was Created

&
Pages 1-11 | Published online: 17 Nov 2021

References

  • Counsil T, McKillip JL. Forensic blood evidence analysis using RNA targets and novel molecular tools. Biologia. 2010;65(2):175–182. doi:10.2478/s11756-010-0001-2
  • Lindenbergh A, Maaskant P, Sijen T. Implementation of RNA profiling in forensic casework. For Sci Int Genet. 2013;7:159–166.
  • Juusola J, Ballentyne J. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J For Sci. 2007;52:1252–1262. doi:10.1111/j.1556-4029.2007.00550.x.
  • Bauer M, Patzelt D. Protamine mRNA molecular marker for spermatozoa in semen stains. Int J Leg Med. 2003;117:175–179. doi:10.1016/j.fsigen.2011.09.007OI:
  • Haas C, Klesser B, Maake C, War W, Kratzer A. mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. For Sci Int Genet. 2009;3:80–88. doi:10.1016/j.fsigen.2008.11.003
  • Zubakov D, Kokshoom M, Kloosterman A, Kayser M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16 year old stains. Int J Leg Med. 2009;123:71–74. doi:10.1007/s00414-008-0249-z
  • Visser M, Zubakov D, Ballantyne K, Kayser M. mRNA-based skin identification for forensic applications. Int J Leg Med. 2011;125:253–263. doi:10.1007/s00414-010-0545-2
  • Roeder AD, Haas C. mRNA profiling using a minimum of 5 mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Leg Med. 2013;127:707–721. doi:10.1007/s00414-012-0794-3
  • Lindenbergh A, de Pagter M, Ramdayal G, et al. A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. For Sci Int Genet. 2012;6:565–577. doi:10.1016/j.fsigen.2012.01.009
  • Richard MII, Harper KA, Craig RL, Onorato AJ, Robertson JM, Donfack J. Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. For Sci Int Genet. 2012;6:452–460.
  • Cordula H, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. For Sci Int Genet. 2021;52:102486. doi:10.1016/j.fsigen.2021.102486
  • Fu J, Allen RW. A method to estimate the age of bloodstains using quantitative PCR. For Sci Int Genet. 2019;39:103–108. doi:10.1016/j.fsigen.2018.12.004
  • Anderson S, Howard B, Hobbs GR, Bishop CP. A method for determining the age of a bloodstain. For Sci Int. 2005;148:37–45. doi:10.1016/j.forsciint.2004.04.071
  • Anderson S, Hobbs GR, Bishop CP. Multivariate analysis for estimating the age of a bloodstain. J For Sci. 2010;56:186–193. doi:10.1111/j.1556-4029.2010.01551.x
  • Sampaio-Silva F, Magalhaes T, Carvalho F, Dinis-Oliverira RJ, Silvestre R. Profiling of RNA degradation for estimation of post mortem interval. PLOS One. 2013;8:10. doi:10.1371/journalpone.0056507
  • Weinbrecht KD, Fu J, Payton M, Allen RW. Time-dependent loss of mRNA transcripts from forensic samples analyzed using next-generation sequencing. Res Rep For Med Sci. 2017;7:1–12. doi:10.2147/RRFMS.S125782
  • Kohlmeier F, Schneider PM. Successful mRNA profiling of 23 years old blood stains. For Sci Int Genet. 2012;6:274–276. doi:10.1016/j.fsigen.2011.04.007
  • Bjarnason GA, Jordan RCK, Sothern RB. Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Path. 1999;154(2):613–622. doi:10.1016/S0002-9440(10)65306-0
  • Kimura A, Ishida Y, Hayashi T, Nosaka M, Kondo T. Estimating time of death based on the biological clock. Int J Legal Med. 2011;125:385–391. doi:10.1007/s00414-010-0527-4
  • Lech K, Ackermann K, Wollstein A, Revell VL, Skene DJ, Kayser M. Assessing the suitability of miRNA-142-5p and miRNA-541 for bloodstain deposition timing. For Sci Intl Genet. 2014;12:181–184. doi:10.1016/j.fsigen.2014.06.008
  • Lech K, Ackermann K, Revell VL, Lao O, Skene DJ, Kayser M. Dissecting daily and circadian expression rhythms of clock-controlled genes in human blood. J Biol Rhythms. 2015;31:68–81. doi:10.1177/0748730415611761
  • Gekakis N, Staknis D, Nguyen HB, et al. Role of CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–1569. doi:10.1126/science.280.5369.1564
  • Sangoram AM, Saez L, Antoch MP, et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-Induced transcription. Neuron. 1998;21:1101–1113. doi:10.1016/s0896-6273(00)80627-3
  • Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205. doi:10.1016/s0092-8674(00)81014-4
  • Lee C, Etchegaray JP, Cagampang FRA, Loudon ASI, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107:855–867. doi:10.1016/s0092-8674(01)00610-9
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–179. doi:10.1038/nrg.2016.150
  • Yang MY, Chang JG, Lin PM, et al. Down regulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci. 2006;97:1298–1307. doi:10.1111/j.1349-7006.2006.00331.x
  • Ebert-Zavos E, Horvat-Gordon M, Taylor A, Bartell PA. Biological clocks in the duodenum and the diurnal regulation of duodenal and plasma serotonin. PLoS One. 2013;8:e58477. doi:10.1371/journal.pone.0058477
  • Masri S, Cervantes M, Sassone-Corsi P. The circadian clock and cell cycle: interconnected biological circuits. Curr Opinion Biol. 2013;25:730–734. doi:10.1016/j.ceb.2013.07.013
  • Champier J, Claustrat B, Besançon R, et al. Evidence for tryptophan hydroxylase and hydroxy-indol-o-methyl-transferase mRNAs in human blood platelets. Life Sci. 1997;60:2191–2197. doi:10.1016/S0024-3205(97)00234-8
  • Kusanagi H, Hida A, Satoh K, et al. Expression profiles of 10 circadian clock genes in human peripheral blood mononuclear cells. Neurosci Res. 2008;61:136–142. doi:10.1016/j.neures.2008.01.012
  • Salani R, Davidson B, Fiegl M, et al. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin Cancer Res. 2007;13:5805. doi:10.1158/1078-0432
  • Liu S, Cay Y, Sothern RB, Guan Y, Chan P. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol Int. 2007;24:793–820. doi:10.1080/07420520701672556
  • Vogl T, Pröpper C, Hartmann M, et al. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J Biol Chem. 1999;274:25291–25296. doi:10.1074/jbc.274.36.25291
  • Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017;127:437–446. doi:10.1172/JCI90328
  • Yu M, Hazelton WD, Luebeck GE, Grady WM. Epigenetic aging: more than just a clock when it comes to cancer. Cancer Res. 2019. doi:10.1158/0008-5472.can-19-0924