178
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Molecular docking, synthesis, and antimycobacterial activities of pyrrolyl hydrazones and their copper complexes

, , , &
Pages 1-14 | Published online: 30 Dec 2015

References

  • Wolinsky E. Tuberculosis. In: Wyngaarden JB, Smith LH, Jr, Bennett JC, editors. Cecil Textbook of Medicine. Vol 2. 19th ed. Philadelphia, PA: WB Saunders Company; 1992:1733–1742.
  • Sensi P, Grass IGG. Antimycobacterial agents. In: Burger A, Wolff ME, editors. Burger’s Medicinal Chemistry and Drug Discovery. Vol 2. 5th ed. New York, NY: John Wiley and Sons; 1996:575–635.
  • World Health Organization. Global Tuberculosis Report. Geneva, Switzerland: WHO; 2013.
  • Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12:388–404.
  • Goldman RC, Plumley KV, Laughon BE. The evolution of extensively drug resistant tuberculosis (XDR-TB): history, status and issues for global control. Infect Disord Drug Targets. 2007;7:73–91.
  • Benatar SR. Extensively drug resistant tuberculosis – problem will get worse in South Africa unless poverty is alleviated. Br Med J. 2006;333(7570):705.
  • Lawn SD, Wilkinson R. Extensively drug resistant tuberculosis – a serious wake-up call for global health. Br Med J. 2006;333:559–560.
  • Dahle UR. Extensively drug resistant tuberculosis – beware patients lost to follow-up. Br Med J. 2006;333(7570):705.
  • Gandhi NR, Moll A, Sturm AW, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368:1575–1580.
  • Manissero D, Fernandez K. Extensive drug-resistant TB: a threat for Europe? Euro Surveill. 2006;11:E060928.2.
  • Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101.
  • Takayama K, Wang L, David HL. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1972;2(1):29–35.
  • Quemard A, Laneelle G, Lacave C. Mycolic acid synthesis: a target for ethionamide in mycobacteria? Antimicrob Agents Chemother. 1992;36(6):1316–1321.
  • Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994;263:227–230.
  • Joshi SD, Dixit SR, More UA, Aminabhavi TM, Kulkarni VH, Gadad AK. Enoyl ACP reductase as effective target for the synthesized novel antitubercular drugs: a-state-of-the-art. Mini Rev Med Chem. 2014;14:678–693.
  • Aminabhavi TM, Biradar NS, Patil SB, Hoffman DE. Structural and biological studies on benzimidazolyl amino acid complexes of dimethyldichlorosilane. Inorg Chim Acta. 1986;125:125–128.
  • Jaiswal V, Gupta SR, Rastogi RB, Kumar R, Singh VP. Evaluation of antiwear activity of substituted benzoylhydrazones and their copper(II) complexes in paraffin oil as efficient low SAPS additives and their interactions with the metal surface using density functional theory. J Mater Chem A. 2015;3:5092–5109.
  • Sutradhar M, Kirillova MV, Guedes da Silva MFC, Liu CM, Pombeiro AJL. Tautomeric effect of hydrazone Schiff bases in tetranuclear Cu(II) complexes: magnetism and catalytic activity towards mild hydrocarboxylation of alkanes. Dalton Trans. 2013;42:16578–16587.
  • Nitschke JR. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc Chem Res. 2007;40:103–107.
  • Opstal T, Verpoort F. Synthesis of highly active ruthenium indenylidene complexes for atom-transfer radical polymerization and ring-opening-metathesis polymerization. Angew Chem Int Ed Engl. 2003;42:2876–2884.
  • Chew ST, Lo KM, Lee SK, et al. Copper complexes with phosphonium containing hydrazone ligand: topoisomerase inhibition and cytotoxicity study. Eur J Med Chem. 2014;76:397–407.
  • Joseph J, Nagashri K, Janaki GB. Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur J Med Chem. 2012;49:151–163.
  • Patil M, Hunoor R, Gudasi K. Transition metal complexes of a new hexadentate macroacyclic N2O4-donor Schiff base: inhibitory activity against bacteria and fungi. Eur J Med Chem. 2010;45:2981–2986.
  • Liu ZC, Wang BD, Wang B, et al. Synthesis of heterobimetallic complexes: In vitro DNA binding, cleavage and antimicrobial studies. J Med Chem. 2010;45:5353–5361.
  • Kaabi K, Zeller M, Ferretti V, Silva PPS, Nasr BC. Iron(II), Nickel(II), Copper(II) and Zinc(II) Complexes of 2,4-dinitro-6(pyridine-2-ylmethylamino) methylphenolate: synthesis, characterization and Antimicrobial Activities. Inorg Chim Acta. 2012;388:52–59.
  • Singh AP, Kaushik NK, Verma AK, Hundal G, Gupta R. Synthesis, structure and biological activity of copper(II) complexes of 4-(2-pyridylmethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione and 4-(2-pyridylethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione. Eur J Med Chem. 2009;44:1607–1614.
  • Horsfall JG. Principles of Fungicidal Action. Waltham, MA: Chronica Botanica Co.; 1956:141.
  • Arman P, Wain RL. Studies upon the copper fungicides: X. The role of leaf exudates in the solution of copper from Bordeaux mixture. Ann Appl Biol. 1958;46:366–371.
  • Raman N, Jeyamurugan R, Senthilkumar R, Rajkapoor B, Franzblau SG. In vivo and in vitro evaluation of highly specific thiolate carrier group copper(II) and zinc(II) complexes on Ehrlich ascites carcinoma tumor model. Eur J Med Chem. 2010;45:5438–5451.
  • Li Y, Yang ZY, Wu JC. Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. Eur J Med Chem. 2010;45:5692–5701.
  • Sayed M, Zayed MAA, Gehad MG. Tetradentate-arm Schiff base derived from the condensation reaction of 3,3′-dihydroxybenzidine, glyoxal/diacetyl and 2-aminophenol: designing, structural elucidation and properties of their binuclear metal(II) complexes. Arab J Chem. 2010;3:103–113.
  • Joshi SD, More UA, Pansuriya K, Aminabhavi TM, Gadad AK. Synthesis and molecular modeling studies of novel pyrrole analogs as antimycobacterial agents. J Saudi Chem Soc. 2013. doi:10.1016/j.jscs.2013.09.002.
  • More UA, Joshi SD, Aminabhavi TM, Gadadd AK, Nadagouda MN, Kulkarni VH. Design, synthesis, molecular docking and 3D-QSAR studies of potent inhibitors of enoylacyl carrier protein reductase as potential antimycobacterial agents. Eur J Med Chem. 2014;71:199–218.
  • Joshi SD, Dixit SR, More UA, Rai S, Kulkarni VH. Molecular modeling, synthesis, antibacterial and antitubercular activities of some novel pyrrolyl 1,2,4-triazole derivatives. Indo Am J Pharm Res. 2014;4(5):2323–2338.
  • Joshi SD, More UA, Dixit SR, Dubey D, Tripathi A, Kulkarni VH. Discovering potent inhibitors against the enoyl-acyl carrier protein reductase (InhA) of mycobacterium tuberculosis: structure based design, synthesis and antimicrobial activity of quinoline hydrazones. Indo Am J Pharm Res. 2014;4(2):864–877.
  • Tripos International. Sybyl-X 2.0. St Louis, MO: Tripos International; 2012.
  • Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996;10:427–440.
  • Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46:499–511.
  • Clark M, Cramer RD, Opdenbosch VN. Validation of the general purpose tripos 5.2 force field. J Comput Chem. 1989;10:982–1012.
  • Ai Y, Wang ST, Sun PH, Song FJ. Molecular modeling studies of 4,5-dihydro-1H-pyrazolo[4,3-H] quinazoline derivatives as potent CDK2/cyclin a inhibitors using 3D-QSAR and docking. Int J Mol Sci. 2010;11:3705–3724.
  • Lan P, Chen WN, Chen WM. Molecular modeling studies on imidazo[4,5-b]pyridine derivatives as Aurora A kinase inhibitors using 3D-QSAR and docking approaches. Eur J Med Chem. 2011;46:77–94.
  • Joshi SD, Vagdevi HM, Vaidya VP, Gadaginamath GS. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents. Eur J Med Chem. 2008;43:1989–1996.
  • Lourenco MCS, deSouza MVN, Pinheiro AC, et al. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC. 2007;15:181–191.
  • Goto S, Jo K, Kawakita T, Mitsuhashi S, Nishino T, Ohsawa N. Determination method of minimum inhibitory concentrations. Chemotherapy. 1981;29:76–79.
  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edemas in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–547.