453
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation

ORCID Icon, , , , , , ORCID Icon, & show all
Pages 1-19 | Received 31 Mar 2023, Accepted 03 Jun 2023, Published online: 14 Jun 2023

References

  • Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–1222.
  • Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi:10.1016/S0140-6736(17)31612-4
  • Gascon J, Bern C, Pinazo MJ. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 2010;115(1–2):22–27. doi:10.1016/j.actatropica.2009.07.019
  • Echavarría NG, Echeverría LE, Stewart M, Gallego C, Saldarriaga C. Chagas Disease: chronic Chagas Cardiomyopathy. Curr Probl Cardiol. 2021;46(3):100507. doi:10.1016/j.cpcardiol.2019.100507
  • Echeverria LE, Morillo CA. American Trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2019;33(1):119–134. doi:10.1016/j.idc.2018.10.015
  • Carod-Artal FJ, Gascon J. Chagas disease and stroke. Lancet Neurol. 2010;9(5):533–542. doi:10.1016/S1474-4422(10)70042-9
  • Francisco AF, Jayawardhana S, Olmo F, et al. Challenges in Chagas disease drug development. Molecules. 2020;25(12):2799. doi:10.3390/molecules25122799
  • Vázquez C, García-Vázquez E, Carrilero B, et al. Tolerance and adherence of patients with chronic Chagas disease treated with benznidazole. J Braz Soc Trop Med. 2023;56. doi:10.1590/0037-8682-0384-2022
  • Tornheim JA, Lozano Beltran DF, Gilman RH, et al. Improved completion rates and characterization of drug reactions with an intensive Chagas disease treatment program in rural Bolivia. PLoS Negl Trop Dis. 2013;7(9):e2407. doi:10.1371/journal.pntd.0002407
  • Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323(9):844–853. doi:10.1001/jama.2020.1166
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. doi:10.1016/j.jhealeco.2016.01.012
  • Hinkson IV, Madej B, Stahlberg EA. Accelerating therapeutics for opportunities in medicine: a paradigm shift in drug discovery. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.00770
  • Weng H-B, Chen H-X, Wang M-W. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty. 2018;7(1). doi:10.1186/s40249-018-0444-1
  • De Rycker M, Wyllie S, Horn D, Read KD, Gilbert IH. Anti-trypanosomatid drug discovery: progress and challenges. Nat Rev Microbiol. 2022;21(1):35–50. doi:10.1038/s41579-022-00777-y
  • Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: organization, multi-gene families, transcription, and biological implications. Genes. 2020;11(10):1–26. doi:10.3390/genes11101196
  • El-Sayed NM, Myler PJ, Blandin G, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409.
  • Talavera-López C, Messenger LA, Lewis MD, et al. Repeat-driven generation of antigenic diversity in a major human pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol. 2021;11:77. doi:10.3389/fcimb.2021.614665
  • Bivona AE, Alberti AS, Cerny N, Trinitario SN, Malchiodi EL. Chagas disease vaccine design: the search for an efficient Trypanosoma cruzi immune-mediated control. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165658. doi:10.1016/j.bbadis.2019.165658
  • Pérez-Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol. 2021;43(2):e12786. doi:10.1111/pim.12786
  • Sánchez-Valdéz FJ, Padilla A, Wang W, Orr D, Tarleton RL. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife. 2018;7. doi:10.7554/eLife.34039
  • Ward AI, Lewis MD, Khan AA, et al. In vivo analysis of Trypanosoma cruzi Persistence foci at single-cell resolution. mBio. 2020;11(4):1–13. doi:10.1128/mBio.01242-20
  • Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol. 2019;17(10):607–620. doi:10.1038/s41579-019-0238-x
  • Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas disease: current view of an ancient and global chemotherapy challenge. ACS Infect Dis. 2020;6(11):2830–2843. doi:10.1021/acsinfecdis.0c00353
  • Chatelain E. Chagas disease drug discovery: toward a new era. J Biomol Screen. 2015;20(1):22–35. doi:10.1177/1087057114550585
  • Ottilie S, Goldgof GM, Calvet CM, et al. Rapid Chagas disease drug target discovery using directed evolution in drug-sensitive yeast. ACS Chem Biol. 2016;12(2):422–434. doi:10.1021/acschembio.6b01037
  • Kourbeli V, Chontzopoulou E, Moschovou K, et al. An overview on target-based drug design against kinetoplastid protozoan infections: human African trypanosomiasis, Chagas disease and leishmaniases. Molecules. 2021;26(15):4629. doi:10.3390/molecules26154629
  • Fauro R, Presti SL, Bazan C, et al. Use of clomipramine as chemotherapy of the chronic phase of Chagas disease. Parasitology. 2013;140(7):917–927. doi:10.1017/S0031182013000103
  • Villalobos-Rocha JC, Sánchez-Torres L, Nogueda-Torres B, et al. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol Res. 2014;113(6):2027–2035. doi:10.1007/s00436-014-3850-8
  • Valera-Vera EA, Sayé M, Reigada C, Miranda MR, Pereira CA. In silico repositioning of etidronate as a potential inhibitor of the Trypanosoma cruzi enolase. J Mol Graph Model. 2020;95:107506. doi:10.1016/j.jmgm.2019.107506
  • Bhambra AS, Ruparelia KC, Tan HL, et al. Synthesis and antitrypanosomal activities of novel pyridylchalcones. Eur J Med Chem. 2017;128:213–218. doi:10.1016/j.ejmech.2017.01.027
  • Sinatti V, Baptista LP, Alves-Ferreira M, et al. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J Mol Graph Model. 2017;77:168–180. doi:10.1016/j.jmgm.2017.08.007
  • Ferreira DD, Mesquita JT, da Costa Silva TA, et al. Efficacy of sertraline against Trypanosoma cruzi: an in vitro and in silico study. J Venom Anim Toxins Incl Trop Dis. 2018;24(1). doi:10.1186/s40409-018-0165-8
  • Juárez-Saldivar A, Schroeder M, Salentin S, et al. Computational drug repositioning for Chagas disease using protein-ligand interaction profiling. Int J Mol Sci. 2020;21(12):4270. doi:10.3390/ijms21124270
  • Mendoza-Martínez C, Correa-Basurto J, Nieto-Meneses R, et al. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur J Med Chem. 2015;96:296–307. doi:10.1016/j.ejmech.2015.04.028
  • Demoro B, Caruso F, Rossi M, et al. Bisphosphonate metal complexes as selective inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. Dalton Trans. 2012;41(21):6468–6476. doi:10.1039/c2dt12179d
  • Matutino Bastos T, Mannochio Russo H, Silvio Moretti N, et al. Chemical constituents of Anacardium occidentale as inhibitors of Trypanosoma cruzi sirtuins. Molecules. 2019;24(7):1299. doi:10.3390/molecules24071299
  • Peña I, Pilar Manzano M, Cantizani J, et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep. 2015;5(1). doi:10.1038/srep08771
  • Alonso-Padilla J, Cotillo I, Presa JL, et al. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl Trop Dis. 2015;9(1):e0003493. doi:10.1371/journal.pntd.0003493
  • Engel JC, Ang KKH, Chen S, et al. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob Agents Chemother. 2010;54(8):3326–3334. doi:10.1128/AAC.01777-09
  • Germain AR, Carmody LC, Dockendorff C, et al. Identification of small-molecule inhibitors of Trypanosoma cruzi replication. Bioorg Med Chem Lett. 2011;21(23):7197–7200. doi:10.1016/j.bmcl.2011.09.057
  • Alonso-Padilla J, Rodríguez A, Dumonteil E. High throughput screening for anti–Trypanosoma cruzi drug discovery. PLoS Negl Trop Dis. 2014;8(12):e3259. doi:10.1371/journal.pntd.0003259
  • Buckner FS, Verlinde CLMJ, la Flamme AC, van Voorhis WC. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother. 1996;40(11):2592–2597. doi:10.1128/AAC.40.11.2592
  • Bettiol E, Samanovic M, Murkin AS, et al. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis. 2009;3(2):e384. doi:10.1371/journal.pntd.0000384
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016;537(7619):229–233. doi:10.1038/nature19339
  • Martinez-Peinado N, Cortes-Serra N, Torras-Claveria L, et al. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasit Vectors. 2020;13(1):1–10. doi:10.1186/s13071-020-04171-6
  • Sykes ML, Avery VM. Approaches to protozoan drug discovery: phenotypic screening miniperspectives series on phenotypic screening for antiinfective targets. J Med Chem. 2013;56(20):7727–7740. doi:10.1021/jm4004279
  • MacLean LM, Thomas J, Lewis MD, et al. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery. PLoS Negl Trop Dis. 2018;12(7):e0006612. doi:10.1371/journal.pntd.0006612
  • Rolón M, Vega C, Escario JA, Gómez-Barrio A. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol Res. 2006;99(2):103–107. doi:10.1007/s00436-006-0126-y
  • Canavaci AMC, Bustamante JM, Padilla AM, et al. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis. 2010;4(7):e740. doi:10.1371/journal.pntd.0000740
  • Nohara LL, Lema C, Bader JO, Aguilera RJ, Almeida IC. High-content imaging for automated determination of host-cell infection rate by the intracellular parasite Trypanosoma cruzi. Parasitol Int. 2010;59(4):565–570. doi:10.1016/j.parint.2010.07.007
  • Dantas RF, Dos Santos ECT, Junior FPS. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz. 2022;117. doi:10.1590/0074-02760210402
  • Franco CH, Alcântara LM, Chatelain E, Freitas-Junior L, Moraes CB. Drug discovery for Chagas disease: impact of different host cell lines on assay performance and hit compound selection. Trop Med Infect Dis. 2019;4(2):82. doi:10.3390/tropicalmed4020082
  • Martínez-Peinado N, Cortes-Serra N, Tallini LR, et al. Amaryllidaceae plants: a potential natural resource for the treatment of Chagas disease. Parasit Vectors. 2021;14(1):337. doi:10.1186/s13071-021-04837-9
  • Morillo CA, Waskin H, Sosa-Estani S, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. Cruzi carriers: the STOP-CHAGAS trial. J Am Coll Cardiol. 2017;69(8):939–947. doi:10.1016/j.jacc.2016.12.023
  • Roquero I, Cantizani J, Cotillo I, et al. Novel chemical starting points for drug discovery in leishmaniasis and Chagas disease. Int J Parasitol Drugs Drug Resist. 2019;10:58–68. doi:10.1016/j.ijpddr.2019.05.002
  • de Rycker M, Thomas J, Riley J, et al. Identification of trypanocidal activity for known clinical compounds using a new Trypanosoma cruzi hit-discovery screening cascade. PLoS Negl Trop Dis. 2016;10(4):e0004584. doi:10.1371/journal.pntd.0004584
  • Svensen N, Id SW, Gray Id DW, De M, Id R, Tonelli RR. Live-imaging rate-of-kill compound profiling for Chagas disease drug discovery with a new automated high-content assay. PLoS Negl Trop Dis. 2021;15(10):e0009870. doi:10.1371/journal.pntd.0009870
  • Cantizani J, Gamallo P, Cotillo I, et al. Rate-of-Kill (RoK) assays to triage large compound sets for Chagas disease drug discovery: application to GSK Chagas box. PLoS Negl Trop Dis. 2021;15(7):e0009602. doi:10.1371/journal.pntd.0009602
  • Choi JM, Oh SJ, Lee SY, et al. HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res. 2015;38(5):691–704. doi:10.1007/s12272-014-0502-6
  • Martinez-Peinado N, Martori C, Cortes-Serra N, et al. Anti-Trypanosoma cruzi activity of metabolism modifier compounds. Int J Mol Sci. 2021;22(2):688. doi:10.3390/ijms22020688
  • Chatelain E, Ioset JR. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov. 2017;13(2):141–153. doi:10.1080/17460441.2018.1417380
  • Zingales B, Miles MA, Moraes CB, et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz. 2014;109(6):828. doi:10.1590/0074-0276140156
  • Sykes ML, Kennedy EK, Avery VM. Impact of laboratory-adapted intracellular Trypanosoma cruzi strains on the activity profiles of compounds with anti-T. cruzi activity. Microorganisms. 2023;11(2):476. doi:10.3390/microorganisms11020476
  • Torrico F, Gascón J, Barreira F, et al. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a Phase 2, double-blind, randomised trial. Lancet Infect Dis. 2021;21(8):1129–1140. doi:10.1016/S1473-3099(20)30844-6
  • Torrico F, Gascon J, Ortiz L, et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis. 2018;18(4):419–430. doi:10.1016/S1473-3099(17)30538-8
  • Molina I, Gómez I Prat J, Salvador F, et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med. 2014;370(20):1899–1908. doi:10.1056/NEJMoa1313122
  • Riley J, Brand S, Voice M, et al. Development of a fluorescence-based Trypanosoma cruzi CYP51 inhibition assay for effective compound triaging in drug discovery programmes for Chagas disease. PLoS Negl Trop Dis. 2015;9(9):e0004014. doi:10.1371/journal.pntd.0004014
  • Garzoni LR, Adesse D, Soares M, et al. Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system. J Infect Dis. 2008;197(6):906–915. doi:10.1086/528373
  • Breyner NM, Hecht M, Nitz N, Rose E, Carvalho JL. In vitro models for investigation of the host-parasite interface - possible applications in acute Chagas disease. Acta Trop. 2020;202:105262. doi:10.1016/j.actatropica.2019.105262
  • Orlando LMR, Lechuga GC, da Silva Lara L, et al. Structural optimization and biological activity of pyrazole derivatives: virtual computational analysis, recovery assay and 3D culture model as potential predictive tools of effectiveness against Trypanosoma cruzi. Molecules. 2021;26(21):6742. doi:10.3390/molecules26216742
  • Nisimura LM, Ferrão PM, da Rocha Nogueira A, et al. Effect of Posaconazole in an in vitro model of cardiac fibrosis induced by Trypanosoma cruzi. Mol Biochem Parasitol. 2020;238:111283. doi:10.1016/j.molbiopara.2020.111283
  • Kratz JM, Gonçalves KR, Romera LM, et al. The translational challenge in Chagas disease drug development. Mem Inst Oswaldo Cruz. 2022;117:e200501. doi:10.1590/0074-02760200501
  • Jeffrey Neitz R, Chen S, Supek F, et al. Lead identification to clinical candidate selection: drugs for Chagas disease. J Biomol Screen. 2015;20(1):101–111. doi:10.1177/1087057114553103
  • Osorio-Méndez JF, Cevallos AM. Discovery and genetic validation of chemotherapeutic targets for Chagas’ disease. Front Cell Infect Microbiol. 2019;9:439. doi:10.3389/fcimb.2018.00439
  • Ros-Lucas A, Martinez-Peinado N, Bastida J, Gascón J, Alonso-Padilla J. The use of alphafold for in silico exploration of drug targets in the Parasite Trypanosoma cruzi. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.944748
  • Trevisan RO, Santos MM, Desidério CS, et al. In silico identification of new targets for diagnosis, vaccine, and drug candidates against Trypanosoma cruzi. Dis Markers. 2020;2020:1–15. doi:10.1155/2020/9130719
  • Vela A, Coral-Almeida M, Sereno D, et al. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2021;15(3):e0009269. doi:10.1371/journal.pntd.0009269
  • Pereira CA, Sayé M, Reigada C, et al. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology. 2020;147(6):611–633. doi:10.1017/S0031182020000207
  • Panecka-Hofman J, Poehner I, Wade RC. Anti-trypanosomatid structure-based drug design – lessons learned from targeting the folate pathway. Expert Opin Drug Discov. 2022;17(9):1029–1045. doi:10.1080/17460441.2022.2113776
  • Martinez-Peinado N, Lorente-Macías Á, García-Salguero A, et al. Novel purine chemotypes with activity against Plasmodium falciparum and Trypanosoma cruzi. Pharmaceuticals. 2021;14(7):638. doi:10.3390/ph14070638
  • Kande V, Kalonji WM, Rembry S, et al. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial. Lancet Infect Dis. 2022;23:463–470. doi:10.1016/S1473-3099(22)00660-0
  • Padilla AM, Wang W, Jacobs RT, Tarleton RL. Discovery of an orally active benzoxaborole prodrug effective in the treatment of Chagas disease in non-human primates. Nat Microbiol. 2022;7(10):1536–1546. doi:10.1038/s41564-022-01211-y
  • Belew AT, Junqueira C, Rodrigues-Luiz GF, et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 2017;13(12):e1006767. doi:10.1371/journal.ppat.1006767
  • Aslett M, Aurrecoechea C, Berriman M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(suppl_1):457–462. doi:10.1093/nar/gkp851
  • Amos B, Aurrecoechea C, Barba M, et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022;50(D1):D898–D911. doi:10.1093/nar/gkab929
  • El-Sayed NM, Myler PJ, Bartholomeu DC, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409–415.
  • Franzén O, Ochaya S, Sherwood E, et al. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl Trop Dis. 2011;5(3):e984. doi:10.1371/journal.pntd.0000984
  • Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021;50:D439–44.
  • Varadi M, Velankar S. The impact of alphafold protein structure database on the fields of life sciences. Proteomics. 2022. doi:10.1002/PMIC.202200128
  • Bordin N, Dallago C, Heinzinger M, et al. Novel machine learning approaches revolutionize protein knowledge. Trends Biochem Sci. 2022;48(4):345–359. doi:10.1016/j.tibs.2022.11.001
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2
  • Wong F, Krishnan A, Zheng EJ, et al. Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery. Mol Syst Biol. 2022;18(9). doi:10.15252/msb.202211081
  • Wheeler J, Yurchenko V. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021;16(11):e0259871. doi:10.1371/journal.pone.0259871
  • Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. BioRxiv. 2022:10–2021. doi:10.1101/2021.10.04.463034
  • Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–682. doi:10.1038/s41592-022-01488-1
  • Lye LF, Owens K, Shi H, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6(10):1001161. doi:10.1371/journal.ppat.1001161
  • Cristina Costa F, Francisco AF, Jayawardhana S, et al. Expanding the toolbox for Trypanosoma cruzi: a parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl Trop Dis. 2018;12(4):e0006388. doi:10.1371/journal.pntd.0006388
  • Lander N, Cruz-Bustos T, Docampo R. A CRISPR/Cas9-riboswitch-based method for downregulation of gene expression in Trypanosoma cruzi. Front Cell Infect Microbiol. 2020;10. doi:10.3389/fcimb.2020.00068
  • Lander N, Chiurillo MA. State-of-The-art CRISPR /Cas9 technology for genome editing in trypanosomatids. J Eukaryot Microbiol. 2019;66(6):981–991. doi:10.1111/jeu.12747
  • Taylor M, Lander N, Yoshida N. Editorial: unravelling T. cruzi Biology. Front Cell Infect Microbiol. 2020;10:382. doi:10.1038/s43018-020-0047-1
  • Jones NG, Thomas EB, Brown E, et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a Kinome-Wide RNAi screen. PLoS Pathog. 2014;10(1):e1003886. doi:10.1371/journal.ppat.1003886
  • Baker N, Catta-Preta CMC, Neish R, et al. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat Commun. 2021;12(1). doi:10.1038/s41467-021-21360-8
  • Chiurillo MA, Jensen BC, Docampo R, Kumar A. Drug target validation of the protein kinase AEK1, essential for proliferation, host cell invasion, and intracellular replication of the human pathogen Trypanosoma cruzi. Microbiol Spectr. 2021;9(2). doi:10.1128/Spectrum.00738-21
  • Lima ML, Tulloch LB, Corpas-Lopez V, et al. Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas’ disease. Antimicrob Agents Chemother. 2022;66(1). doi:10.1128/AAC.01535-21
  • Wyllie S, Brand S, Thomas M, et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Natl Acad Sci USA. 2019;116(19):9318–9323. doi:10.1073/pnas.1820175116
  • Bijlmakers MJ. Ubiquitination and the proteasome as drug targets in trypanosomatid diseases. Front Chem. 2021;8. doi:10.3389/fchem.2020.630888
  • Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov. 2019;15:145–158. doi:10.1080/17460441.2020.1681394
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1–13. doi:10.1038/srep42717
  • Chatelain E, Konar N. Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther. 2015;9:4807. doi:10.2147/DDDT.S90208
  • Neal RA, van Bueren J. Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro. Trans R Soc Trop Med Hyg. 1988;82(5):709–714. doi:10.1016/0035-9203(88)90208-8
  • Trischmann T, Tanowitz H, Wittner M, Bloom B. Trypanosoma cruzi: role of the immune response in the natural resistance of inbred strains of mice. Exp Parasitol. 1978;45(2):160–168. doi:10.1016/0014-4894(78)90055-3
  • Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov. 2020;15(12):1381–1402. doi:10.1080/17460441.2020.1806233
  • Romanha AJ, Solange Lisboa de C, Maria de Nazaré Correia S, et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(2):233–238. doi:10.1590/S0074-02762010000200022
  • Francisco AF, Lewis MD, Jayawardhana S, et al. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother. 2015;59(8):4653–4661. doi:10.1128/AAC.00520-15
  • Lewis MD, Francisco AF, Jayawardhana S, et al. Imaging the development of chronic Chagas disease after oral transmission. Sci Rep. 2018;8(1):11292. doi:10.1038/s41598-018-29564-7
  • Eickhoff CS, Lawrence CT, Sagartz JE, et al. ECG detection of murine chagasic cardiomyopathy. J Parasitol. 2010;96(4):758. doi:10.1645/GE-2396.1
  • Mateus J, Guerrero P, Lasso P, et al. An animal model of acute and chronic Chagas disease with the reticulotropic Y strain of Trypanosoma cruzi that depicts the multifunctionality and dysfunctionality of T cells. Front Immunol. 2019;10:918. doi:10.3389/fimmu.2019.00918
  • Francisco AF, Jayawardhana S, Taylor MC, Lewis MD, Kelly JM. Assessing the effectiveness of curative benznidazole treatment in preventing chronic cardiac pathology in experimental models of Chagas disease. Antimicrob Agents Chemother. 2018;62(10). doi:10.1128/AAC.00832-18
  • Lewis MD, Fortes Francisco A, Taylor MC, et al. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol. 2014;16(9):1285–1300. doi:10.1111/cmi.12297
  • Verderio P, Lecchi M, Ciniselli CM, et al. 3Rs principle and legislative decrees to achieve high standard of animal research. Animals. 2023;13(2):277. doi:10.3390/ani13020277
  • Lewis MD, Francisco AF, Taylor MC, Kelly JM. A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen. 2015;20(1):36–43. doi:10.1177/1087057114552623
  • Cencig S, Coltel N, Truyens C, Carlier Y. Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains. Int J Antimicrob Agents. 2012;40(6):527–532. doi:10.1016/j.ijantimicag.2012.08.002
  • Francisco AF, Saade U, Jayawardhana S, et al. Comparing in vivo bioluminescence imaging and the Multi-Cruzi immunoassay platform to develop improved Chagas disease diagnostic procedures and biomarkers for monitoring parasitological cure. PLoS Negl Trop Dis. 2022;16(10):e0010827. doi:10.1371/journal.pntd.0010827
  • de Oliveira GM, de Melo Medeiros M, da Silva Batista W, et al. Applicability of the use of charcoal for the evaluation of intestinal motility in a murine model of Trypanosoma cruzi infection. Parasitol Res. 2007;102(4):747–750. doi:10.1007/s00436-007-0829-8
  • Ny L, Holmqvist B, Li H, et al. A magnetic resonance imaging study of intestinal dilation in Trypanosoma cruzi–infected mice deficient in nitric oxide synthase. Am J Trop Med Hyg. 2008;79(5):760. doi:10.4269/ajtmh.2008.79.760
  • Khan AA, Langston HC, Costa FC, et al. Local association of Trypanosoma cruzi chronic infection foci and enteric neuropathic lesions at the tissue micro-domain scale. PLoS Pathog. 2021;17(8):e1009864. doi:10.1371/journal.ppat.1009864
  • Avalos-Borges EE, Rios LE, Jiménez-Coello M, Ortega-Pacheco A, Garg NJ. Animal models of Trypanosoma cruzi congenital transmission. Pathogens. 2022;11(10):1172. doi:10.3390/pathogens11101172
  • Ayala EV, Rodrigues da Cunha G, Azevedo MA, et al. C57BL/6 α-1,3-Galactosyltransferase knockout mouse as an animal model for experimental Chagas disease. ACS Infect Dis. 2020;6(7):1807–1815. doi:10.1021/acsinfecdis.0c00061
  • Almeida IC, Ferguson MAJ, Schenkman S, Travassos LR. Lytic anti- α -galactosyl antibodies from patients with chronic Chagas’ disease recognize novel O -linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J. 1994;304(3):793. doi:10.1042/bj3040793
  • Milani SR, Travassos LR. Anti-alpha-galactosyl antibodies in chagasic patients. Possible biological significance. Braz J Med Biol Res. 1988;21(6):1275–1286.
  • Malcolm EL, Saunders AB, Vitt JP, Boutet BG, Hamer SA. Antiparasitic treatment with itraconazole and amiodarone in 2 dogs with severe, symptomatic Chagas cardiomyopathy. J Vet Intern Med. 2022;36(3):1100–1105. doi:10.1111/jvim.16422
  • de Lana M, Giunchetti RC. Dogs as a model for chemotherapy of Chagas disease and leishmaniasis. Curr Pharm Des. 2020;27(14):1741–1756. doi:10.2174/1381612826666201228142703
  • Santos FM, Lima WG, Gravel AS, et al. Cardiomyopathy prognosis after benznidazole treatment in chronic canine Chagas’ disease. J Antimicrob Chemother. 2012;67(8):1987–1995. doi:10.1093/jac/dks135
  • Guedes PMDM, Veloso VM, Tafuri WL, et al. The dog as model for chemotherapy of the Chagas’ disease. Acta Trop. 2002;84(1):9–17. doi:10.1016/S0001-706X(02)00139-0
  • Espinola Carvalho CM, Bonecini-almeida MA, Xavier SS, et al. Chronic Chagas’ disease in Rhesus monkeys (Macaca mulatta): evaluation of parasitemia, serology, electrocardiography, echocardiography and radiology. Am J Trop Med Hyg. 2003;68(6):683–691. doi:10.4269/ajtmh.2003.68.683
  • Seah SKK, Marsden PD, Voller A, Pettitt LE. Experimental Trypanosoma cruzi infection in rhesus monkeys—The acute phase. Trans R Soc Trop Med Hyg. 1974;68(1):63–69. doi:10.1016/0035-9203(74)90254-5
  • Williams JT, Dick EJ, VandeBerg JL, Hubbard GB. Natural Chagas disease in four baboons. J Med Primatol. 2009;38(2):107–113. doi:10.1111/j.1600-0684.2008.00308.x
  • Vitelli-Avelar DM, Sathler-Avelar R, Mattoso-Barbosa AM, et al. Cynomolgus macaques naturally infected with Trypanosoma cruzi-I exhibit an overall mixed pro-inflammatory/modulated cytokine signature characteristic of human Chagas disease. PLoS Negl Trop Dis. 2017;11(2):e0005233. doi:10.1371/journal.pntd.0005233
  • Cox LA, Olivier M, Spradling-Reeves K, et al. Nonhuman primates and translational research-cardiovascular disease. ILAR J. 2017;58(2):235–250. doi:10.1093/ilar/ilx025
  • de Almeida EA, Navarro MR, Guariento ME, Carvalhal SDS. Infecção experimental de macacos cebus apella sp pelo Trypanosoma cruzi: avaliação clínica, eletrocardiqgráfica e anatomopatológica. Rev Soc Bras Med Trop. 1992;25(1):7–12. doi:10.1590/S0037-86821992000100002
  • Wei L, Adderley J, Leroy D, et al. Host-directed therapy, an untapped opportunity for antimalarial intervention. Cell Rep Med. 2021;2(10):100423. doi:10.1016/j.xcrm.2021.100423
  • Varikuti S, Volpedo G, Saljoughian N, et al. The potent ITK/BTK inhibitor ibrutinib is effective for the treatment of experimental visceral leishmaniasis caused by Leishmania donovani. J Infect Dis. 2019;219(4):599. doi:10.1093/infdis/jiy552
  • Rossi MA, Tanowitz HB, Malvestio LM, et al. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis. 2010;4(8):e674. doi:10.1371/journal.pntd.0000674
  • Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and pathogenesis of Chagas heart disease. Annu Rev Pathol. 2020;24:421–447.
  • Nardi Gemme C, Silva TQAC, Martins LC, et al. Diffuse myocardial fibrosis and cardiomyocyte diameter are associated with heart failure symptoms in Chagas cardiomyopathy. Front Cardiovasc Med. 2022;9. doi:10.3389/fcvm.2022.880151
  • Gazos-Lopes F, Oliveira MM, Hoelz LVB, et al. Structural and functional analysis of a platelet-activating Lysophosphatidylcholine of Trypanosoma cruzi. PLoS Negl Trop Dis. 2014;8(8):e3077. doi:10.1371/journal.pntd.0003077
  • Silva-Neto MAC, Lopes AH, Atella GC. Here, there, and everywhere: the ubiquitous distribution of the immunosignaling molecule lysophosphatidylcholine and its role on Chagas disease. Front Immunol. 2016;7. doi:10.3389/fimmu.2016.00062
  • Gomes MT, Monteiro RQ, Grillo LA, et al. Platelet-activating factor-like activity isolated from Trypanosoma cruzi. Int J Parasitol. 2006;36(2):165–173. doi:10.1016/j.ijpara.2005.09.016
  • Belaunzarán ML, Lammel EM, De Isola ELD. Phospholipases A in trypanosomatids. Enzyme Res. 2011;2011:1–10. doi:10.4061/2011/392082
  • Waghabi MC, Keramidas M, Feige JJ, Araujo-Jorge TC, Bailly S. Activation of transforming growth factor β by Trypanosoma cruzi. Cell Microbiol. 2005;7(4):511–517. doi:10.1111/j.1462-5822.2004.00481.x
  • Ferreira RR, Fabiana da Silva M, Alves GF, et al. TGF- β polymorphisms are a risk factor for Chagas disease. Dis Markers. 2018;2018:1–10. doi:10.1155/2018/4579198
  • Ferreira RR, Waghabi MC, Bailly S, et al. The search for biomarkers and treatments in Chagas disease: insights from TGF-beta studies and immunogenetics. Front Cell Infect Microbiol. 2022;11. doi:10.3389/fcimb.2021.767576
  • Ferreira RR, de Souza EM, de Oliveira FL, et al. Proteins involved on TGF-β pathway are up-regulated during the acute phase of experimental Chagas disease. Immunobiology. 2016;221(5):587–594. doi:10.1016/j.imbio.2016.01.009
  • Rodrigues Ferreira R, da Silva Abreu R, Vilar-Pereira G, et al. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas’ heart disease. PLoS Negl Trop Dis. 2019;13:e0007602. doi:10.1371/journal.pntd.0007602
  • Benaim G, Paniz Mondolfi AE. The emerging role of amiodarone and dronedarone in Chagas disease. Nat Rev Cardiol. 2012;9(10):605–609. doi:10.1038/nrcardio.2012.108
  • Barbosa JMC, Pedra Rezende Y, de Melo TG, et al. Experimental combination therapy with amiodarone and low-dose benznidazole in a mouse model of Trypanosoma cruzi acute infection. Microbiol Spectr. 2022;10(1). doi:10.1128/spectrum.01852-21
  • Madigan R, Majoy S, Ritter K, et al. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J Am Vet Med Assoc. 2019;255(3):317–329. doi:10.2460/javma.255.3.317
  • Stein C, Migliavaca CB, Colpani V, et al. Amiodarone for arrhythmia in patients with Chagas disease: a systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis. 2018;12(8):e0006742. doi:10.1371/journal.pntd.0006742
  • Brustolin Aleixo CF, Ferraz FN, Massini PF, et al. Beneficial immunomodulatory and neuro digestive effect in Trypanosoma cruzi infection after Lycopodium clavatum 13c treatment. Microb Pathog. 2017;112:1–4. doi:10.1016/j.micpath.2017.09.026
  • Varikuti S, Jha BK, Volpedo G, et al. Host-directed drug therapies for neglected tropical diseases caused by protozoan parasites. Front Microbiol. 2018;9:2655. doi:10.3389/fmicb.2018.02655
  • Torrico F, Gascón J, Ortiz L, et al. A phase 2, randomized, multicenter, placebo-controlled, proof-of-concept trial of oral fexinidazole in adults with chronic indeterminate Chagas disease. Clin Infect Dis. 2023;76(3):e1186–e1194. doi:10.1093/cid/ciac579
  • Nagle A, Biggart A, Be C, et al. Discovery and characterization of clinical candidate LXE408 as a kinetoplastid-selective proteasome inhibitor for the treatment of leishmaniases. J Med Chem. 2020;63(19):10773–10781. doi:10.1021/acs.jmedchem.0c00499
  • Mowbray CE, Braillard S, Glossop PA, et al. DNDI-6148: a novel benzoxaborole preclinical candidate for the treatment of visceral leishmaniasis. J Med Chem. 2021;64(21):16159–16176. doi:10.1021/acs.jmedchem.1c01437
  • Bernhard S, Kaiser M, Burri C, Mäser P. Fexinidazole for human African trypanosomiasis, the fruit of a successful public-private partnership. Diseases. 2022;10(4):90. doi:10.3390/diseases10040090
  • Bahia MT, Andrade IM, Martins TA, et al. Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis. 2012;6:e1870.
  • Wittlin S, Mäser P. From magic bullet to magic bomb: reductive bioactivation of antiparasitic agents. ACS Infect Dis. 2021;7(10):2777–2786. doi:10.1021/acsinfecdis.1c00118
  • DNDi. Fexinidazole for Chagas. DNDi: Drugs for Neglected Diseases Initiative, Chagas Disease Portfolio; 2023.