243
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Catheter-Free Urodynamics Testing: Current Insights and Clinical Potential

ORCID Icon
Pages 1-17 | Received 22 Sep 2023, Accepted 19 Dec 2023, Published online: 02 Jan 2024

References

  • Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–222. doi:10.1080/13697137.2018.1543263
  • Schreiber Pedersen L, Lose G, Høybye MT, Elsner S, Waldmann A, Rudnicki M. Prevalence of urinary incontinence among women and analysis of potential risk factors in Germany and Denmark. Acta Obstet Gynecol Scand. 2017;96(8):939–948. doi:10.1111/aogs.13149
  • Dakurah MN, Koo C, Choi W, Joung YH. Implantable Bladder Sensors: a Methodological Review. Int Neurourol J. 2015;19(3):133–141. doi:10.5213/inj.2015.19.3.133
  • Yao M, Simoes A. Urodynamic Testing and Interpretation. Treasure Island (FL): StatPearls Publishing; 2023.
  • Abelson B, Majerus S, Sun D, Gill BC, Versi E, Damaser MS. Ambulatory urodynamic monitoring: state of the art and future directions. Nat Rev Urol. 2019;16(5):291–301. doi:10.1038/s41585-019-0175-5
  • Jourand P, Puers R. The BladderPill: an in-body system logging bladder pressure. Sens Actuators A. 2010;162(2):160–166. doi:10.1016/j.sna.2010.01.035
  • Radley SC, Rosario DJ, Chapple CR, Farkas AG. Conventional and ambulatory urodynamic findings in women with symptoms suggestive of bladder overactivity. J Urol. 2001;166(6):2253–2258.
  • Cantu H, Sharaf A, Bevan W, Hassine A, Hashim H. Ambulatory urodynamics in clinical practice: a single centre experience. Neurourol Urodyn. 2019;38(8):2077–2082. doi:10.1002/nau.24153
  • Wille S, Schumacher P, Paas J, et al. Catheterless long-term ambulatory urodynamic measurement using a novel three-device system. PLoS One. 2014;9(5):e96280. doi:10.1371/journal.pone.0096280
  • Pannek J, Pieper P. Clinical usefulness of ambulatory urodynamics in the diagnosis and treatment of lower urinary tract dysfunction. Scand J Urol Nephrol. 2008;42(5):428–432. doi:10.1080/00365590802299056
  • Stuart T, Hanna J, Gutruf P. Wearable devices for continuous monitoring of biosignals: challenges and opportunities. APL Bioeng. 2022;6(2):021502. doi:10.1063/5.0086935
  • Bazaka K, Jacob MV. Implantable Devices: issues and Challenges. Electronics. 2012;2(4):1–34. doi:10.3390/electronics2010001
  • Semproni F, Iacovacci V, Menciassi A. Bladder Monitoring Systems: state of the Art and Future Perspectives. IEEE Access. 2022;10:125626–125651. doi:10.1109/ACCESS.2022.3221816
  • Majerus SJA, Offutt SJ, Brink TS, et al. Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2067–2075. doi:10.1109/TNSRE.2021.3117518
  • Greco F, Bandodkar AJ, Menciassi A. Emerging technologies in wearable sensors. APL Bioeng. 2023;7(2):020401. doi:10.1063/5.0153940
  • Clement KD, Lapitan MC, Omar MI, Glazener CM. Urodynamic studies for management of urinary incontinence in children and adults: a short version Cochrane systematic review and meta-analysis. Neurourol Urodyn. 2015;34(5):407–412. doi:10.1002/nau.22584
  • Suskind AM, Clemens JQ, Kaufman SR, et al. Patient perceptions of physical and emotional discomfort related to urodynamic testing: a questionnaire-based study in men and women with and without neurologic conditions. Urology. 2015;85(3):547–551. doi:10.1016/j.urology.2014.11.001
  • Hashim H, Abrams P. Is the bladder a reliable witness for predicting detrusor overactivity? J Urol. 2006;175(1):191–194. doi:10.1016/S0022-5347(05)00067-4
  • Digesu GA, Gargasole C, Hendricken C, et al. ICS teaching module: ambulatory urodynamic monitoring. Neurourol Urodyn. 2017;36(2):364–367. doi:10.1002/nau.22933
  • Frainey BT, Majerus SJA, Derisavifard S, et al. pd66-05 safety, feasibility, and accuracy of the uromonitor: a catheter-free wireless ambulatory cystometry device. J Urol. 2021;206(Supplement 3). doi:10.1097/JU.0000000000002110.05
  • Bright Uro. Feasibility Assessment of Glean Urodynamics System. Available from: https://clinicaltrials.gov/study/NCT05694793. Accessed December 19, 2023.
  • Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-Integrated Wearable Systems and Implantable Biosensors: a Comprehensive Review. Biosensors. 2020;10(7):79. doi:10.3390/bios10070079
  • Koven A, Herschorn S. NIRS: past, Present, and Future in Functional Urology. Curr Bladder Dysfunct Rep. 2022;17(4):241–249. doi:10.1007/s11884-022-00665-4
  • Song P, Ma Z, Ma J, et al. Recent Progress of Miniature MEMS Pressure Sensors. Micromachines. 2020;11(1):56. doi:10.3390/mi11010056
  • Tan R, McClure T, Lin CK, et al. Development of a fully implantable wireless pressure monitoring system. Biomed Microdevices. 2009;11:259–264. doi:10.1007/s10544-008-9232-1
  • Basu AS, Majerus S, Ferry E, Makovey I, Zhu H, Damaser MS. Is submucosal bladder pressure monitoring feasible? Proc Inst Mech Eng. Nanomaterials. 2019;233(1):100–113. doi:10.1177/0954411918754925
  • Jourand P, Puers R, Autonomous A. Capacitive Sensor Based and Battery Powered Internal Bladder Pressure Monitoring System. Procedia Chem. 2009;1(1):1263–1266. doi:10.1016/j.proche.2009.07.315
  • Wille S, Tenholte D, Engelmann U. A system for long-term urodynamic studies without catheters. Eur Urol. 2013;63(5):966–968. doi:10.1016/j.eururo.2013.01.029
  • Bakula M, Soebadi A, De Ridder D, Puers R. The Bladder Pill: developments Toward Bladder Pressure Measurement in Wake Mini-pigs. Procedia Eng. 2016;168:193–196. doi:10.1016/j.proeng.2016.11.215
  • Soebadi MA, Bakula M, Hakim L, Puers R, De Ridder D. Wireless intravesical device for real-time bladder pressure measurement: study of consecutive voiding in awake minipigs. PLoS One. 2019;14(12):e0225821. doi:10.1371/journal.pone.0225821
  • Lee HY, Choi B, Kim S, Kim SJ, Bae WJ, Kim SW. Sensitivity-Enhanced LC Pressure Sensor for Wireless Bladder Pressure Monitoring. IEEE Sensors Journal. 2016;16(12):4715–4724. doi:10.1109/JSEN.2016.2533262
  • Li YT, Yang LY, Hsu WT, Peng CW. Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: a Preliminary Study. Sensors. 2020;20(16):4610. doi:10.3390/s20164610
  • Alloussi SH, Lang C, Eichel R, Ziegler M, Stenzl A, Alloussi S. Urodynamical benchmarks: a retrospective analyses of 976 combined urodynamics with no pathological findings to evaluate standard values. Eur Urol Suppl. 2010;9(2):227. doi:10.1016/S1569-9056(10)60679-3
  • McAdams I, Kenyon H, Bourbeau D, Damaser MS, Zorman C. Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research. IEEE Biomed Circuits Syst Conf. 2018;2018. doi:10.1109/BIOCAS.2018.8584729
  • Wang J, Hou C, Zheng X, Zhang W, Chen A, Xu Z. Design and evaluation of a new bladder volume monitor. Arch Phys Med Rehabil. 2009;90(11):1944–1947. doi:10.1016/j.apmr.2009.06.013
  • Cao H, Tata U, Landge V, Li AL, Peng YB, Chiao JC A wireless bladder volume monitoring system using a flexible capacitance-based sensor. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. 2013;Austin, TX, USA:34–36. doi:10.1109/BioWireleSS.2013.6613666.
  • Chen SC, Hsieh TH, Fan WJ, et al. Design and evaluation of potentiometric principles for bladder volume monitoring: a preliminary study. Sensors. 2015;15(6):12802–12815. doi:10.3390/s150612802
  • Kim MK, Lee S, Yoon I, et al. Polypyrrole/Agarose Hydrogel-Based Bladder Volume Sensor with a Resistor Ladder Structure. Sensors. 2018;18(7):2288. doi:10.3390/s18072288
  • Kim MK, Kim H, Jung YS, et al. Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:1732–1735. doi:10.1109/EMBC.2017.8037177
  • Rajagopalan S, Sawan M, Ghafar-Zadeh E, Savadogo O, Chodavarapu VP. A Polypyrrole-based Strain Sensor Dedicated to Measure Bladder Volume in Patients with Urinary Dysfunction. Sensors. 2008;8(8):5081–5095. doi:10.3390/s8085081
  • Verathon. BladderScan Prime Plus. Available from: https://www.verathon.com/bladderscan-prime-plus/. Accessed December 19, 2023.
  • Mandal S, Dehghanzadeh P, Zamani H, Shaik S. A Wireless Implantable Microsystem for Real-Time Bladder Volume Monitoring. TechRxiv. 2022. doi:10.36227/techrxiv.20063783.v1
  • Stothers L, Macnab A, Mutabazi S, Mukisa R, Molavi B, Shadgan B. Near-Infrared Spectroscopic Screening for Bladder Disease in Africa: training Rural Clinic Staff to Collect Data of Diagnostic Quality. J Spectrosc. 2016;2016:1241862. doi:10.1155/2016/1241862
  • Gaubert V, Gidik H, Koncar V. Proposal of a Lab Bench for the Unobtrusive Monitoring of the Bladder Fullness with Bioimpedance Measurements. Sensors. 2020;20(14):3980. doi:10.3390/s20143980
  • van Leuteren PG, de Vries BA, de Joode-Smink JCJ, ten Haken B, de Jong TPVM, Dik P. URIKA, continuous ultrasound monitoring for the detection of a full bladder in children with dysfunctional voiding: a feasibility study. Biomed Phys Eng Express. 2017;3(1):017005. doi:10.1088/2057-1976/aa589f
  • Hofstetter S, Zilezinski M, Wolf A, et al. Dfree ultrasonic sensor in supporting quality of life and patient satisfaction with bladder dysfunction. Int J Urol Nurs. 2022;17:62–69. doi:10.1111/ijun.12334
  • Hafid A, Difallah S, Alves C, et al. State of the Art of Non-Invasive Technologies for Bladder Monitoring: a Scoping Review. Sensors. 2023;23(5):2758. doi:10.3390/s23052758
  • van Leuteren PG, Klijn AJ, de Jong TPVM, Dik P. SENS-U: validation of a wearable ultrasonic bladder monitor in children during urodynamic studies. J Pediatr Urol. 2018;14(6):569.e1–569.e6. doi:10.1016/j.jpurol.2018.07.018
  • Fournelle M, Grün T, Speicher D, et al. Portable Ultrasound Research System for Use in Automated Bladder Monitoring with Machine-Learning-Based Segmentation. Sensors. 2021;21(19):6481. doi:10.3390/s21196481
  • Jo HG, Park BH, Joung DY, et al. Forward-Looking Ultrasound Wearable Scanner System for Estimation of Urinary Bladder Volume. Sensors. 2021;21(16):5445. doi:10.3390/s21165445
  • Kang BI, Kim A, Kim S. Advancing Patient Care: innovative Use of Near-Infrared Spectroscopy for Monitoring Urine Volume in Neurogenic Bladder. Int Neurourol J. 2023;27(Suppl 1):S27–33. doi:10.5213/inj.2346100.050
  • Macnab AJ, Shadgan B, Stothers L, Afshar K. Ambulant monitoring of bladder oxygenation and hemodynamics using wireless near-infrared spectroscopy. Can Urol Assoc J. 2013;7(1–2):E98–E104. doi:10.5489/cuaj.271
  • Palla A, Rossi S, Fanucci L. Bioimpedance based monitoring system for people with neurogenic dysfunction of the urinary bladder. Stud Health Technol Inform. 2015;217:892–896.
  • Shin SC, Moon J, Kye S, Lee K, Lee YS, Kang HG. Continuous bladder volume monitoring system for wearable applications. Annu Int Conf IEEE Eng Med Biol Soc Jeju, Korea. 2017;2017:4435–4438. doi:10.1109/EMBC.2017.8037840
  • Leonhäuser D, Castelar C, Schlebusch T, et al. Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers. Biomed Eng Online. 2018;17(1):95. doi:10.1186/s12938-018-0526-0
  • Park E, Lee JW, Kang M, Cho K, Cho BH, Lee KS. Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: a Technological Review. Int Neurourol J. 2018;22(4):228–236. doi:10.5213/inj.1836246.123
  • Vogt B, Desgrippes A, Desfemmes FN. Changing the double-pigtail stent by a new suture stent to improve patient’s quality of life: a prospective study. World J Urol. 2015;33:1061–1068. doi:10.1007/s00345-014-1394-2
  • Bosio A, Alessandria E, Agosti SC, et al. Pigtail suture stents significantly reduce stent-related symptoms compared to conventional double J Stents: a prospective randomized trial. Eur Urol Open Sci. 2021;29:1–9. doi:10.1016/j.euros.2021.03.011
  • Karam R, Bourbeau D, Majerus S, et al. Real-Time Classification of Bladder Events for Effective Diagnosis and Treatment of Urinary Incontinence. IEEE Trans Biomed Eng. 2016;63(4):721–729. doi:10.1109/TBME.2015.2469604
  • Karam R, Bhunia S, Majerus S, Brose SW, Damaser MS, Bourbeau D. Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5789–5792. doi:10.1109/EMBC.2016.7592043
  • Yu L, Kim BJ, Meng E. Chronically implanted pressure sensors: challenges and state of the field. Sensors. 2014;14(11):20620–20644. doi:10.3390/s141120620
  • Nelson BD, Karipott SS, Wang Y, Ong KG. Wireless Technologies for Implantable Devices. Sensors. 2020;20(16):4604. doi:10.3390/s20164604
  • Suster MA, Young DJ Wireless recharging of battery over large distance for implantable bladder pressure chronic monitoring. 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China. 2011;2011:1208–1211. doi:10.1109/TRANSDUCERS.2011.5969398.
  • Park YG, Lee S, Park JU. Recent Progress in Wireless Sensors for Wearable Electronics. Sensors. 2019;19(20):4353. doi:10.3390/s19204353
  • Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials. 2022;12(8):1366. doi:10.3390/nano12081366
  • Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun. 2018;9(1):5349. doi:10.1038/s41467-018-07764-z
  • Ouyang H, Tian J, Sun G, et al. Self-Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Adv Mater. 2017;29(40). doi:10.1002/adma.201703456
  • Majerus SJ, Garverick SL, Suster MA, Fletter PC, Damaser MS. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring. ACM J Emerg Technol Comput Syst. 2012;8(2):11. doi:10.1145/2180878.2180883
  • Kim A, Powell CR, Ziaie B. An Universal packaging technique for low-drift implantable pressure sensors. Biomed Microdevices. 2016;18(2):32. doi:10.1007/s10544-016-0058-y
  • Majerus SJ, Fletter PC, Damaser MS, Garverick SL. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Trans Biomed Eng. 2011;58(3):763–767. doi:10.1109/TBME.2010.2085002
  • Yao J, Qiang W, Wei H, et al. Ultrathin and Robust Micro-Nano Composite Coating for Implantable Pressure Sensor Encapsulation. ACS Omega. 2020;5(36):23129–23139. doi:10.1021/acsomega.0c02897
  • Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. Biosensors. 2023;13(4):462. doi:10.3390/bios13040462
  • Majerus SJ, Fletter PC, Ferry EK, Zhu H, Gustafson KJ, Damaser MS. Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor. PLoS One. 2017;12(1):e0168375. doi:10.1371/journal.pone.0168375
  • Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science. 2011;333(6044):838–843. doi:10.1126/science.1206157
  • Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. Biosensors. 2022;12(11):952. doi:10.3390/bios12110952
  • Zheng Q, Zou Y, Zhang Y, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv. 2016;2(3):e1501478. doi:10.1126/sciadv.1501478
  • Cheng Y, Xu J, Li L, et al. Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for the Engineering of Fully Degradable Force Sensors. Adv Sci. 2023;10(11):e2207269. doi:10.1002/advs.202207269
  • Amen MT, Pham TTT, Cheah E, Tran DP, Thierry B. Metal-Oxide FET Biosensor for Point-of-Care Testing: overview and Perspective. Molecules. 2022;27(22):7952. doi:10.3390/molecules27227952
  • Hossain MM, Shabbir B, Wu Y, et al. Ultrasensitive WSe2 field-effect transistor-based biosensor for label-free detection of cancer. 2D Mater. 2021;8(4):045005. doi:10.1088/2053-1583/ac1253
  • Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: strategies, Stability, Washability and Perspective. Nanomaterials. 2022;12(12):2039. doi:10.3390/nano12122039
  • Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. Electronic textiles for energy, sensing, and communication. iScience. 2022;25(5):104174. doi:10.1016/j.isci.2022.104174
  • Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng. 2022;6(2):021505. doi:10.1063/5.0088136
  • Farooqui MF, Shamim A. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds. Sci Rep. 2016;6:28949. doi:10.1038/srep28949
  • Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. 2018;4(1):eaap9841. doi:10.1126/sciadv.aap9841
  • Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward Self-Control Systems for Neurogenic Underactive Bladder: a Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator. ACS Nano. 2018;12(4):3487–3501. doi:10.1021/acsnano.8b00303
  • Khurram A, Ross SE, Sperry ZJ, et al. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface. J Neural Eng. 2017;14(3):036027. doi:10.1088/1741-2552/aa6801
  • Dodd W, Motwani K, Small C, et al. Spinal cord injury and neurogenic lower urinary tract dysfunction: what do we know and where are we going? J Mens Health. 2022;18(1):24. doi:10.31083/j.jomh1801024
  • Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci Adv. 2020;6(18):eaba0412. doi:10.1126/sciadv.aba0412