242
Views
4
CrossRef citations to date
0
Altmetric
Review

Novel Energy Devices in Head and Neck Robotic Surgery – A Narrative Review

, &
Pages 25-39 | Published online: 23 Apr 2020

References

  • Golusinski W, Golusinska-Kardach E. Current role of surgery in the management of oropharyngeal cancer. Front Oncol. 2019;9:388. doi:10.3389/fonc.2019.00388
  • Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35. doi:10.1056/NEJMoa0912217
  • O’Malley BW Jr, Weinstein GS, Hockstein NG. Transoral robotic surgery (TORS): glottic microsurgery in a canine model. J Voice. 2006;20(2):263–268. doi:10.1016/j.jvoice.2005.10.004
  • Weinstein GS, O’Malley BW Jr, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope. 2005;115(7):1315–1319. doi:10.1097/01.MLG.0000170848.76045.47
  • NICE. Cancer of the Upper Aerodigestive Tract: Assessment and Management in People Aged 16 and Ove. London; 2016.
  • Arora A, Chaidas K, Garas G, et al. Outcome of TORS to tongue base and epiglottis in patients with OSA intolerant of conventional treatment. Sleep Breath. 2016;20(2):739–747. doi:10.1007/s11325-015-1293-9
  • Garas G, Arora A. Robotic head and neck surgery: history, technical evolution and the future. ORL. 2018;80(3–4):117–124.
  • Golusinski W. Functional organ preservation surgery in head and neck cancer: transoral robotic surgery and beyond. Front Oncol. 2019;9:293. doi:10.3389/fonc.2019.00293
  • Ibrahim AS, Civantos FJ, Leibowitz JM, et al. Meta-analysis comparing outcomes of different transoral surgical modalities in management of oropharyngeal carcinoma. Head Neck. 2019;41(6):1656–1666. doi:10.1002/hed.25647
  • von Scotti F, Kapsreiter M, Scherl C, Iro H, Bohr C. A 9-year analysis of transoral laser microsurgery (TLM) of head and neck cancer on their potential suitability for transoral robotic surgery (TORS) for estimation of future TORS-specific caseload. Eur Rev Med Pharmacol Sci. 2018;22(10):2949–2953.
  • Hoffmann TK, Schuler PJ, Bankfalvi A, et al. Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur Arch Oto-Rhino-Laryngology. 2014;271(5):1207–1213. doi:10.1007/s00405-013-2615-9
  • O’Flynn P, Awad Z, Kothari P, Vaz FM. The first UK report of the applications of flexible CO2 laser in head and neck surgery: how we do it. Clin Otolaryngology. 2010;35(2):139–142. doi:10.1111/j.1749-4486.2010.02082.x
  • Hinni ML, Ferlito A, Brandwein-Gensler MS, et al. Surgical margins in head and neck cancer: a contemporary review. Head Neck. 2013;35(9):1362–1370. doi:10.1002/hed.23110
  • Gorphe P, Simon C. A systematic review and meta-analysis of margins in transoral surgery for oropharyngeal carcinoma. Oral Oncol. 2019;98:69–77. doi:10.1016/j.oraloncology.2019.09.017
  • Hanna J, Brauer PR, Morse E, Judson B, Mehra S. Is robotic surgery an option for early T-stage laryngeal cancer? Early nationwide results. Laryngoscope. 2019;24:24.
  • Li H, Torabi SJ, Park HS, et al. Clinical value of transoral robotic surgery: nationwide results from the first 5 years of adoption. Laryngoscope. 2019;129(8):1844–1855. doi:10.1002/lary.27740
  • Karaman M, Gun T, Temelkuran B, Aynaci E, Kaya C, Tekin AM. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery. Eur Arch Oto-Rhino-Laryngology. 2017;274(5):2273–2279. doi:10.1007/s00405-017-4449-3
  • Lim DJ, Kang SH, Kim BH, et al. Treatment of obstructive sleep apnea syndrome using radiofrequency-assisted uvulopalatoplasty with tonsillectomy. Eur Arch Otorhinolaryngol. 2013;270(2):585–593. doi:10.1007/s00405-012-2082-8
  • Hofauer B, Knopf A, Strassen U, et al. Radiofrequency resection in oral and oropharyngeal tumor surgery. Auris Nasus Larynx. 2019;47(1):148–153.
  • Rollin M. The Physics of Lasers. London: Imperial College London; July 2019.
  • Solares CA, Strome M. Transoral robot-assisted CO2 laser supraglottic laryngectomy: experimental and clinical data. Laryngoscope. 2007;117(5):817–820. doi:10.1097/MLG.0b013e31803330b7
  • Remacle M, Matar N, Lawson G, Bachy V, Delos M, Nollevaux MC. Combining a new CO2 laser wave guide with transoral robotic surgery: a feasibility study on four patients with malignant tumors. Eur Arch Oto-Rhino-Laryngology. 2012;269(7):1833–1837. doi:10.1007/s00405-011-1838-x
  • Matsumoto K, Suzuki H, Usami Y, Hattori M, Komoro T. Histological evaluation of artifacts in tongue tissue produced by the CO2 laser and the electrotome. Photomed Laser Surg. 2008;26(6):573–577. doi:10.1089/pho.2007.2217
  • Hanby DF, Gremillion G, Zieske AW, et al. Harmonic scalpel versus flexible CO2 laser for tongue resection: a histopathological analysis of thermal damage in human cadavers. World J Surg Oncol. 2011;9(1):83. doi:10.1186/1477-7819-9-83
  • Zeitels SM, Burns JA, Akst LM, Hillman RE, Broadhurst MS, Anderson RR. Office-based and microlaryngeal applications of a fiber-based thulium laser. Ann Otol Rhinol Laryngol. 2006;115(12):891–896. doi:10.1177/000348940611501206
  • Pothen AJ, Evenboer J, Swartz JE, et al. Use of the 2-μm continuous wave thulium laser for the resection of oral squamous cell carcinomas does not impair pathological assessment. Lasers Surg Med. 2014;46(8):608–613. doi:10.1002/lsm.22270
  • Benazzo M, Canzi P, Occhini A. Transoral robotic surgery with laser for head and neck cancers: a feasibility study. Orl J Oto-Rhino-Laryngology Related Specialties. 2012;74(3):124–128. doi:10.1159/000337092
  • Medtronic. LIGASURE TECHNOLOGY. https://www.medtronic.com/covidien/en-us/products/vessel-sealing/ligasure-technology.html. Published 2019. Accessed Dec, 2019.
  • Hefermehl LJ, Largo RA, Hermanns T, Poyet C, Sulser T, Eberli D. Lateral temperature spread of monopolar, bipolar and ultrasonic instruments for robot-assisted laparoscopic surgery. BJU Int. 2014;114(2):245–252. doi:10.1111/bju.12498
  • Turkan A, Akkurt G, Yalaza M, et al. Effect of ligasure, monopolar cautery, and bipolar cautery on surgical margins in breast-conserving surgery. Breast Care (Basel). 2019;14(4):194–199. doi:10.1159/000493985
  • Timm RW, Asher RM, Tellio KR, Welling AL, Clymer JW, Amaral JF. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology. Med Devices (Auckl). 2014;7:263–271. doi:10.2147/MDER.S66848
  • Person B, Vivas DA, Ruiz D, Talcott M, Coad JE, Wexner SD. Comparison of four energy-based vascular sealing and cutting instruments: a porcine model. Surg Endosc. 2008;22(2):534–538. doi:10.1007/s00464-007-9619-8
  • Luo Y, Li X, Dong J, Sun W. A comparison of surgical outcomes and complications between hemostatic devices for thyroid surgery: a network meta-analysis. Eur Arch Otorhinolaryngol. 2017;274(3):1269–1278. doi:10.1007/s00405-016-4190-3
  • Garas G, Okabayashi K, Ashrafian H, et al. Which hemostatic device in thyroid surgery? A network meta-analysis of surgical technologies. Thyroid. 2013;23(9):1138–1150. doi:10.1089/thy.2012.0588
  • Holsinger FC, Prichard CN, Shapira G, et al. Use of the photonic band gap fiber assembly CO2 laser system in head and neck surgical oncology. Laryngoscope. 2006;116(7):1288–1290. doi:10.1097/01.mlg.0000227557.61978.18
  • Mattheis S, Hoffmann TK, Schuler PJ, Dominas N, Bankfalvi A, Lang S. The use of a flexible CO2-laser fiber in transoral robotic surgery (TORS). Laryngorhinootologie. 2014;93(2):95–99. doi:10.1055/s-0033-1343413
  • Durmus K, Kucur C, Uysal IO, Dziegielewski PT, Ozer E. Feasibility and clinical outcomes of transoral robotic surgery and transoral robot-assisted carbon dioxide laser for hypopharyngeal carcinoma. J Craniofacial Surg. 2015;26(1):235–237. doi:10.1097/SCS.0000000000001185
  • Kucur C, Durmus K, Dziegielewski PT, Ozer E. Transoral robot-assisted carbon dioxide laser surgery for hypopharyngeal cancer. Head Neck. 2015;37(5):743–745. doi:10.1002/hed.23860
  • Ansarin M, Zorzi S, Massaro MA, et al. Transoral robotic surgery vs transoral laser microsurgery for resection of supraglottic cancer: a pilot surgery. Int J Med Rob Comput Assisted Surg. 2014;10(1):107–112. doi:10.1002/rcs.1546
  • Asik MB, Satar B, Serdar M. Meta-analytic comparison of robotic and transoral laser surgical procedures in supraglottic carcinoma. J Laryngology Otology. 2019;133(5):404–412. doi:10.1017/S0022215119000707
  • De Virgilio A, Iocca O, Malvezzi L, et al. The emerging role of robotic surgery among minimally invasive surgical approaches in the treatment of hypopharyngeal carcinoma: systematic review and meta-analysis. J Clin Med. 2019;8(2):18. doi:10.3390/jcm8020256
  • Hess MM, Fleischer S, Ernstberger M. New 445 nm blue laser for laryngeal surgery combines photoangiolytic and cutting properties. Eur Arch Oto-Rhino-Laryngology. 2018;275(6):1557–1567. doi:10.1007/s00405-018-4974-8
  • Van Abel KM, Moore EJ, Carlson ML, et al. Transoral robotic surgery using the thulium: YAG laser: a prospective study. Arch Otolaryngology Head Neck Surg. 2012;138(2):158–166. doi:10.1001/archoto.2011.1199
  • Benazzo M, Canzi P, Mauramati S, et al. Transoral robot-assisted surgery in supraglottic and oropharyngeal squamous cell carcinoma: laser versus monopolar electrocautery. J Clin Med. 2019;8(12):2166. doi:10.3390/jcm8122166
  • Remacle M, Prasad VMN, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Oto-Rhino-Laryngology. 2015;272(6):1451–1455. doi:10.1007/s00405-015-3532-x
  • Poon H, Li C, Gao W, Ren H, Lim CM. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol. 2018;87:82–88. doi:10.1016/j.oraloncology.2018.10.020
  • Rivera-Serrano CM, Johnson P, Zubiate B, et al. A transoral highly flexible robot: novel technology and application. Laryngoscope. 2012;122(5):1067–1071. doi:10.1002/lary.23237
  • Johnson PJ, Rivera Serrano CM, Castro M, et al. Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope. 2013;123(5):1168–1172. doi:10.1002/lary.23512
  • Mandapathil M, Greene B, Wilhelm T. Transoral surgery using a novel single-port flexible endoscope system. Eur Arch Oto-Rhino-Laryngology. 2015;272(9):2451–2456. doi:10.1007/s00405-014-3177-1
  • Friedrich DT, Scheithauer MO, Greve J, et al. Potential advantages of a single-port, operator-controlled flexible endoscope system for transoral surgery of the larynx. Ann Otology Rhinology Laryngology. 2015;124(8):655–662. doi:10.1177/0003489415575548
  • Mattheis S, Lang S. A new flexible endoscopy-system for the transoral resection of head and neck tumors. Laryngorhinootologie. 2015;94(1):25–28. doi:10.1055/s-0034-1377008
  • Schuler PJ, Duvvuri U, Friedrich DT, Rotter N, Scheithauer MO, Hoffmann TK. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope. 2015;125(3):645–648. doi:10.1002/lary.24957
  • Mattheis S, Hasskamp P, Holtmann L, et al. Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck. 2017;39(3):471–475. doi:10.1002/hed.24611
  • Lang S, Mattheis S, Hasskamp P, et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope. 2017;127(2):391–395. doi:10.1002/lary.26358
  • Persky MJ, Issa M, Bonfili JR, Goyal N, Goldenberg D, Duvvuri U. Transoral surgery using the Flex robotic system: initial experience in the United States. Head Neck. 2018;40(11):2482–2486. doi:10.1002/hed.25375
  • Sethi N, Gouzos M, Padhye V, et al. Transoral robotic surgery using the medrobotic flex system: the adelaide experience. J Robot Surg. 2019;05:05.
  • Kaouk JH, Haber G-P, Autorino R, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–1043. doi:10.1016/j.eururo.2014.06.039
  • Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery. Laryngoscope. 2016;126(4):864–869. doi:10.1002/lary.25724
  • Tateya I, Koh YW, Tsang RK, et al. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy: a comparative preclinical study. Head Neck. 2018;40(1):16–23. doi:10.1002/hed.24868
  • Orosco RK, Tam K, Nakayama M, Holsinger FC, Spriano G. Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system. Head Neck. 2019;41(7):2143–2147. doi:10.1002/hed.25676
  • Chan JYK, Tsang RK, Holsinger FC, et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery. Oral Oncol. 2019;94:101–105. doi:10.1016/j.oraloncology.2019.05.018
  • Holsinger FC, Magnuson JS, Weinstein GS, et al. A next-generation single-port robotic surgical system for transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngology Head Neck Surg. 2019;19:19.
  • Johnson and Johnson. Verb Surgical. https://www.verbsurgical.com. Published 2019. Accessed December, 2019.
  • Cambridge Medical Robotics. 1Versius. https://cmrsurgical.com. Published 2019. Accessed December, 2019.
  • Titan Medical Inc. SPORT Robot. https://titanmedicalinc.com. Published 2019. Accessed December, 2019.
  • Seeliger B, Diana M, Ruurda JP, Konstantinidis KM, Marescaux J, Swanstrom LL. Enabling single-site laparoscopy: the SPORT platform. Surg Endosc. 2019;33(11):3696–3703. doi:10.1007/s00464-018-06658-x