842
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Updated Perspectives on the Neurobiology of Substance Use Disorders Using Neuroimaging

, , &
Pages 99-111 | Received 05 Oct 2022, Accepted 27 Jun 2023, Published online: 10 Aug 2023

References

  • Eastlack SC, Cornett EM, Kaye AD. Kratom-pharmacology, clinical implications, and outlook: a comprehensive review. Pain Ther. 2020;9(1):55–69. doi:10.1007/s40122-020-00151-x
  • Urits I, Charipova K, Gress K, et al. Adverse effects of recreational and medical cannabis. Psychopharmacol Bull. 2021;51(1):94–109.
  • Hayes A, Herlinger K, Paterson L, Lingford-Hughes A. The neurobiology of substance use and addiction: evidence from neuroimaging and relevance to treatment. B J Psych Adv. 2020;26(6):367–378. doi:10.1192/bja.2020.68
  • Edinoff AN, Kaufman SE, Green KM, et al. Methamphetamine use: a narrative review of adverse effects and related toxicities. Health Psychol Res. 2022;10(3):38161. doi:10.52965/001c.38161
  • Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology. 2022;47(1):276–291. doi:10.1038/s41386-021-01153-9
  • Sagrera CE, Alderman L, Goeders NE, Murnane KS. Elucidating the role of trauma and significant life stress in the disease of addiction may provide new targets for medication development. CNS Neurol Disord Drug Targets. 2022. doi:10.2174/1871527321666220511145230
  • McPherson P, Alderman LL, Temple J, et al. Teen Advisory Council Survey’s factors associated with self-harming thoughts. Front Psychiatry. 2022;13:851477. doi:10.3389/fpsyt.2022.851477
  • Volkow ND, Boyle M. Neuroscience of addiction: relevance to prevention and treatment. Am J Psychiatry. 2018;175(8):729–740. doi:10.1176/appi.ajp.2018.17101174
  • Fowler JS, Volkow ND, Kassed CA, Chang L. Imaging the addicted human brain. Sci Pract Perspect. 2007;3(2):4–16. doi:10.1151/spp07324
  • Henry PK, Murnane KS, Votaw JR, Howell LL. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav. 2010;4(3–4):212–219. doi:10.1007/s11682-010-9100-5
  • Howell LL, Murnane KS. Nonhuman primate neuroimaging and the neurobiology of psychostimulant addiction. Ann N Y Acad Sci. 2008;1141(1):176–194. doi:10.1196/annals.1441.023
  • Murnane KS. The renaissance in psychedelic research: what do preclinical models have to offer. Prog Brain Res. 2018;242:25–67. doi:10.1016/bs.pbr.2018.08.003
  • Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–773. doi:10.1016/S2215-0366(16)00104-8
  • Heilig M, MacKillop J, Martinez D, Rehm J, Leggio L, Vanderschuren LJMJ. Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology. 2021;46(10):1715–1723. doi:10.1038/s41386-020-00950-y
  • Volkow ND, Koob GF, McLellan AT, Longo DL. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374(4):363–371. doi:10.1056/NEJMra1511480
  • Koob GF, Caine B, Markou A, Pulvirenti L, Weiss F. Role for the mesocortical dopamine system in the motivating effects of cocaine. NIDA Res Monogr. 1994;145:1–18.
  • Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol Oxf Engl. 1998;12(1):54–67. doi:10.1177/026988119801200108
  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A. 2011;108(37):15037–15042. doi:10.1073/pnas.1010654108
  • Murnane KS, Howell LL. Neuroimaging and drug taking in primates. Psychopharmacology. 2011;216(2):153–171. doi:10.1007/s00213-011-2222-7
  • Volkow ND, Muenke M. The genetics of addiction. Hum Genet. 2012;131(6):773–777. doi:10.1007/s00439-012-1173-3
  • Tiffany ST, Carter BL, Singleton EG. Challenges in the manipulation, assessment and interpretation of craving relevant variables. Addict Abingdon Engl. 2000;95(Suppl 2):S177–S187. doi:10.1080/09652140050111753
  • Mitchell JM, O’Neil JP, Janabi M, Marks SM, Jagust WJ, Fields HL. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci Transl Med. 2012;4(116):116ra6. doi:10.1126/scitranslmed.3002902
  • Caine SB, Negus SS, Mello NK, et al. Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci. 2002;22(7):2977–2988. doi:10.1523/JNEUROSCI.22-07-02977.2002
  • Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci. 1998;18(5):1848–1859. doi:10.1523/JNEUROSCI.18-05-01848.1998
  • Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the “dark side” of drug addiction. Nat Neurosci. 2005;8(11):1442–1444. doi:10.1038/nn1105-1442
  • Garavan H, Pankiewicz J, Bloom A, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry. 2000;157(11):1789–1798. doi:10.1176/appi.ajp.157.11.1789
  • Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science. 1988;242(4879):715–723. doi:10.1126/science.2903550
  • Volkow ND, Wang GJ, Fowler JS, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997;386(6627):830–833. doi:10.1038/386830a0
  • Risinger RC, Salmeron BJ, Ross TJ, et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. NeuroImage. 2005;26(4):1097–1108. doi:10.1016/j.neuroimage.2005.03.030
  • Milella MS, Fotros A, Gravel P, et al. Cocaine cue–induced dopamine release in the human prefrontal cortex. J Psychiatry Neurosci. 2016;41(5):322–330. doi:10.1503/jpn.150207
  • Fowler JS, Volkow ND. PET imaging studies in drug abuse. J Toxicol Clin Toxicol. 1998;36(3):163–174. doi:10.3109/15563659809028936
  • Volkow ND, Hitzemann R, Wang GJ, et al. Long-term frontal brain metabolic changes in cocaine abusers. Synap N Y N. 1992;11(3):184–190. doi:10.1002/syn.890110303
  • Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest. 2003;111(10):1444–1451. doi:10.1172/JCI18533
  • Amen DG, Willeumier K, Johnson R. The clinical utility of brain SPECT imaging in process addictions. J Psychoactive Drugs. 2012;44(1):18–26. doi:10.1080/02791072.2012.660101
  • Malison RT, Best SE, van Dyck CH, et al. Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I] beta-CIT SPECT. Am J Psychiatry. 1998;155(6):832–834. doi:10.1176/ajp.155.6.832
  • Volkow ND, Fowler JS, Wang GJ. Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin Nucl Med. 2003;33(2):114–128. doi:10.1053/snuc.2003.127300
  • Murray DE, Durazzo TC, Schmidt TP, et al. Regional cerebral blood flow in opiate dependence relates to substance use and neuropsychological performance. Addict Biol. 2018;23(2):781–795. doi:10.1111/adb.12523
  • Liu X, Matochik JA, Cadet JL, London ED. Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacol. 1998;18(4):243–252. doi:10.1016/S0893-133X(97)00143-7
  • Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci. 2004;24(26):6028–6036. doi:10.1523/JNEUROSCI.0713-04.2004
  • Volkow ND, Fowler JS, Wolf AP, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry. 1991;148(5):621–626.
  • Wexler BE, Gottschalk CH, Fulbright RK, et al. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry. 2001;158(1):86–95. doi:10.1176/appi.ajp.158.1.86
  • Paulus MP, Hozack NE, Zauscher BE, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacol. 2002;26(1):53–63. doi:10.1016/S0893-133X(01)00334-7
  • Kaufman JN, Ross TJ, Stein EA, Garavan H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci. 2003;23(21):7839–7843. doi:10.1523/JNEUROSCI.23-21-07839.2003
  • Ray S, Hanson C, Hanson SJ, Bates ME. fMRI BOLD response in high-risk college students (part 1): during exposure to alcohol, marijuana, polydrug and emotional picture cues. Alcohol Alcohol Oxf Oxfs. 2010;45(5):437–443. doi:10.1093/alcalc/agq042
  • Martz ME, Hart T, Heitzeg MM, Peltier SJ. Neuromodulation of brain activation associated with addiction: a review of real-time fMRI neurofeedback studies. NeuroImage Clin. 2020;27:102350. doi:10.1016/j.nicl.2020.102350
  • Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology. 2000;54(6):1344–1349. doi:10.1212/WNL.54.6.1344
  • Chang L, Ernst T, Strickland T, Mehringer CM. Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users. Am J Psychiatry. 1999;156(5):716–722. doi:10.1176/ajp.156.5.716
  • Kohut SJ, Kaufman MJ. Magnetic resonance spectroscopy studies of substance use disorders: current landscape and potential future directions. Pharmacol Biochem Behav. 2021;200:173090. doi:10.1016/j.pbb.2020.173090
  • Alper KR, Chabot RJ, Kim AH, Prichep LS, John ER. Quantitative EEG correlates of crack cocaine dependence. Psychiatry Res. 1990;35(2):95–105. doi:10.1016/0925-4927(90)90013-V
  • Costa L, Bauer L. Quantitative electroencephalographic differences associated with alcohol, cocaine, heroin and dual-substance dependence. Drug Alcohol Depend. 1997;46(1–2):87–93. doi:10.1016/S0376-8716(97)00058-6
  • Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl Psychophysiol Biofeedback. 2008;33(1):1–28. doi:10.1007/s10484-007-9047-5
  • Stewart JL, May AC. Electrophysiology for addiction medicine: from methodology to conceptualization of reward deficits. Prog Brain Res. 2016;224:67–84.
  • Houston RJ, Schlienz NJ. Event-related potentials as biomarkers of behavior change mechanisms in substance use disorder treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(1):30–40. doi:10.1016/j.bpsc.2017.09.006
  • Bach P, de Timary P, Gründer G, Cumming P. Molecular imaging studies of alcohol use disorder. Curr Top Behav Neurosci. 2023;2023:1–31.
  • Soto-Montenegro ML, García-Vázquez V, Lamanna-Rama N, López-Montoya G, Desco M, Ambrosio E. Neuroimaging reveals distinct brain glucose metabolism patterns associated with morphine consumption in Lewis and Fischer 344 rat strains. Sci Rep. 2022;12(1):4643. doi:10.1038/s41598-022-08698-9
  • Deng R, Yang X, Meng Y-J, et al. Data-driven study on resting-state functional magnetic resonance imaging during early abstinence of alcohol dependence in male patients and its predictive value for relapse. BMC Psychiatry. 2022;22(1):143. doi:10.1186/s12888-022-03782-w
  • Bralet MC, Mitelman SA, Goodman CR, Lincoln S, Hazlett EA, Buchsbaum MS. Fluorodeoxyglucose positron emission tomography scans in patients with alcohol use disorder. Alcohol Clin Exp Res. 2022;46(6):994–1010. doi:10.1111/acer.14845
  • Ersche KD, Meng C, Ziauddeen H, et al. Brain networks underlying vulnerability and resilience to drug addiction. Proc Natl Acad Sci. 2020;117(26):15253–15261. doi:10.1073/pnas.2002509117
  • Murnane KS, Gopinath KS, Maltbie E, Daunais JB, Telesford QK, Howell LL. Functional connectivity in frontal-striatal brain networks and cocaine self-administration in female rhesus monkeys. Psychopharmacology. 2015;232(4):745–754. doi:10.1007/s00213-014-3709-9
  • Murnane KS, Howell LL. Development of an apparatus and methodology for conducting functional magnetic resonance imaging (fMRI) with pharmacological stimuli in conscious rhesus monkeys. J Neurosci Methods. 2010;191(1):11–20. doi:10.1016/j.jneumeth.2010.06.001
  • Murnane KS, Winschel J, Schmidt KT, et al. Serotonin 2A receptors differentially contribute to abuse-related effects of cocaine and cocaine-induced nigrostriatal and mesolimbic dopamine overflow in nonhuman primates. J Neurosci. 2013;33(33):13367–13374. doi:10.1523/JNEUROSCI.1437-13.2013
  • Murnane KS. Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behav Pharmacol. 2019;30(2 and 3–Spec Issue):151–162. doi:10.1097/FBP.0000000000000459
  • Hampton WH, Hanik IM, Olson IR. Substance abuse and white matter: findings, limitations, and future of diffusion tensor imaging research. Drug Alcohol Depend. 2019;197:288–298. doi:10.1016/j.drugalcdep.2019.02.005
  • Bell RP, Foxe JJ, Nierenberg J, Hoptman MJ, Garavan H. Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals. Drug Alcohol Depend. 2011;114(2–3):159–168. doi:10.1016/j.drugalcdep.2010.10.001
  • Pando-Naude V, Toxto S, Fernandez-Lozano S, Parsons CE, Alcauter S, Garza-Villarreal EA. Gray and white matter morphology in substance use disorders: a neuroimaging systematic review and meta-analysis. Transl Psychiatry. 2021;11(1):1–18. doi:10.1038/s41398-020-01128-2
  • Devoto F, Zapparoli L, Spinelli G, Scotti G, Paulesu E. How the harm of drugs and their availability affect brain reactions to drug cues: a meta-analysis of 64 neuroimaging activation studies. Transl Psychiatry. 2020;10(1):1–11. doi:10.1038/s41398-020-01115-7
  • Terem I, Dang L, Champagne A, et al. 3D amplified MRI (aMRI). Magn Reson Med. 2021;86(3):1674–1686. doi:10.1002/mrm.28797
  • Terem I, Ni WW, Goubran M, et al. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn Reson Med. 2018;80(6):2549–2559. doi:10.1002/mrm.27236
  • Siemens healthineers USA [Internet]; 2023. Available from: https://www.siemens-healthineers.com/en-us. Accessed June 27, 2023.
  • Two new high-end MRI scanners for clinical and scientific use presented [Internet]; 2023. Available from: https://healthcare-in-europe.com/en/news/siemens-high-end-mri-scanners-clinical-scientific-use.html. Accessed June 27, 2023.
  • Siemens healthineers introduces new mobile magnetic resonance imaging scanner Magnetom Viato.Mobile [Internet]; 2023. Available from: https://www.siemens-healthineers.com/press/releases/magnetom-viato-mobile. Accessed June 27, 2023.
  • Photon counting CT [Internet]; 2023. Available from: https://www.siemens-healthineers.com/en-us/computed-tomography/technologies-and-innovations/photon-counting-ct. Accessed June 27, 2023.
  • Toi PT, Jang HJ, Min K, et al. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science. 2022;378(6616):160–168. doi:10.1126/science.abh4340
  • Hodono S, Rideaux R, van Kerkoerle T, Cloos MA. Initial experiences with direct imaging of neuronal activity (DIANA) in humans [Internet]. arXiv; 2023. Available from: http://arxiv.org/abs/2303.00161. Accessed June 27, 2023.
  • Boyle AJ, Gaudet VC, Black SE, Vasdev N, Rosa-Neto P, Zukotynski KA. Artificial intelligence for molecular neuroimaging. Ann Transl Med. 2021;9(9):822. doi:10.21037/atm-20-6220
  • Yang L, Du Y, Yang W, Liu J. Machine learning with neuroimaging biomarkers: application in the diagnosis and prediction of drug addiction. Addict Biol. 2023;28(2):e13267. doi:10.1111/adb.13267
  • Monsour R, Dutta M, Mohamed AZ, Borkowski A, Viswanadhan NA. Neuroimaging in the era of artificial intelligence: current applications. Fed Pract. 2022;39(Suppl 1):S14–S20. doi:10.12788/fp.0231
  • Mill RD, Winfield EC, Cole MW, Ray S. Structural MRI and functional connectivity features predict current clinical status and persistence behavior in prescription opioid users. NeuroImage Clin. 2021;30:102663. doi:10.1016/j.nicl.2021.102663
  • Mete M, Sakoglu U, Spence JS, Devous MD, Harris TS, Adinoff B. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach. BMC Bioinform. 2016;17(Suppl 13):357. doi:10.1186/s12859-016-1218-z
  • Chen Z, Liu X, Yang Q, et al. Evaluation of risk of bias in neuroimaging-based artificial intelligence models for psychiatric diagnosis. JAMA Netw Open. 2023;6(3):e231671. doi:10.1001/jamanetworkopen.2023.1671
  • Gowin JL, Ernst M, Ball T, et al. Using neuroimaging to predict relapse in stimulant dependence: a comparison of linear and machine learning models. NeuroImage Clin. 2019;11(21):101676. doi:10.1016/j.nicl.2019.101676