402
Views
0
CrossRef citations to date
0
Altmetric
Review

Bovine leukemia virus: current perspectives

, , , &
Pages 13-26 | Published online: 10 Aug 2017

References

  • Maclachlan NJ, Dubovi EJ. Retroviridae. In: Press A, editor. Fenner’s Veterinary Virology. 4th ed: Elsevier Science; 2011:243–274.
  • Barbeau B, Hiscott J, Bazarbachi A, et al. Conference highlights of the 16th International Conference on Human Retrovirology: HTLV and related retroviruses, 26–30 June 2013, Montreal, Canada. Retrovirology. 2014;11:19.
  • Schwartz I, Levy D. Pathobiology of bovine leukemia virus. Vet Res. 1994;25(6):521–536.
  • USDA. Bovine Leukosis Virus (BLV) on U.S. Dairy Operations, 2007; 2008.
  • Bauermann FV, Ridpath JF, Dargatz DA. Bovine leukemia virus seroprevalence among cattle presented for slaughter in the United States. J Vet Diagn Invest. 2017.
  • Samagh BS, Kellar JA. Seroepidemiological survey of bovine leukaemia virus infection in Canadian cattle. Paper presented at: Fourth International Symposium on Bovine Leukosis; 1982; Luxembourg.
  • Trono KG, Perez-Filgueira DM, Duffy S, Borca MV, Carrillo C. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol. 2001;83(3):235–248.
  • European Commission. Bovine and swine diseases. Annual Report. 2014.
  • Voges H. Reports from Industry Surveillance and Disease Control Programmes: New Zealand Dairy Enzootic Bovine Leukosis (EBL) Control Scheme SURVEILLANCE 38 37. 2011. Available from http://www.sciquest.org.nz/elibrary/download/72863/New_Zealand_Dairy_Enzootic_Bovine_Leukosis_%28EBL%29_C.pdf? Accessed July 11, 2017.
  • Lairmore MD. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci. 2014;2:189–208.
  • Willems L, Kerkhofs P, Dequiedt F, et al. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc Natl Acad Sci U S A. 1994;91(24):11532–11536.
  • Kincaid RP, Burke JM, Sullivan CS. RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci U SA. 2012;109(8):3077–3082.
  • Rosewick N, Momont M, Durkin K, et al. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A. 2013;110(6):2306–2311.
  • Gillet NA, Hamaidia M, de Brogniez A, et al. Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathog. 2016;12(4):e1005588.
  • Durkin K, Rosewick N, Artesi M, et al. Characterization of novel bovine leukemia virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology. 2016;13(1):33.
  • Rosewick N, Durkin K, Artesi M, et al. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat Commun. 2017;8:15264.
  • Florins A, Gillet N, Asquith B, et al. Cell dynamics and immune response to BLV infection: a unifying model. Front Biosci. 2007;12:1520–1531.
  • Pomier C, Alcaraz MT, Debacq C, et al. Early and transient reverse transcription during primary deltaretroviral infection of sheep. Retrovirology. 2008;5:16.
  • Gillet NA, Gutierrez G, Rodriguez SM, et al. Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathog. 2013;9(10):e1003687.
  • Kettmann R, Marbaix G, Cleuter Y, Portetelle D, Mammerickx M, Burny A. Genomic integration of bovine leukemia provirus and lack of viral RNA expression in the target cells of cattle with different responses to BLV infection. Leuk Res. 1980;4(6):509–519.
  • Merezak C, Pierreux C, Adam E, et al. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency. J Virol. 2001;75(15):6977–6988.
  • Ferrer JF. Bovine lymphosarcoma. Adv Vet Sci Comp Med. 1980;24:1–68.
  • Merezak C, Reichert M, Van Lint C, et al. Inhibition of histone deacetylases induces bovine leukemia virus expression in vitro and in vivo. J Virol. 2002;76(10):5034–5042.
  • Pierard V, Guiguen A, Colin L, et al. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding. J Biol Chem. 2010;285(25):19434–19449.
  • Debacq C, Asquith B, Reichert M, Burny A, Kettmann R, Willems L. Reduced cell turnover in bovine leukemia virus-infected, persistently lymphocytotic cattle. J Virol. 2003;77(24):13073–13083.
  • Ferrer JF, Marshak RR, Abt DA, Kenyon SJ. Relationship between lymphosarcoma and persistent lymphocytosis in cattle: a review. J Am Vet Med Assoc. 1979;175(7):705–708.
  • Radostitis O, Gay C, Hinchcliff K, Constable P.. Disease associated with viruses and chlamydia I. In: Elsevier, editor. Veterinary Medicine. 10th ed. Elsevier; 2007:1209–1221.
  • Juliarena MA, Gutierrez SE, Ceriani C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am J Vet Res. 2007;68(11):1220–1225.
  • Ferrer JF, Kenyon SJ, Gupta P. Milk of dairy cows frequently contains a leukemogenic virus. Science. 1981;213(4511):1014–1016.
  • McClure HM, Keeling ME, Custer RP, Marshak RR, Abt DA, Ferrer JF. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Res. 1974;34(10):2745–2757.
  • Chung YS, Prior HC, Duffy PF, Rogers RJ, Mackenzie AR. The effect of pasteurisation on bovine leucosis virus-infected milk. Aust Vet J. 1986;63(11):379–380.
  • Johnson RK. Bovine leukemia virus and enzootic bovine leukosis. Veterinary Bulletin. 1992;62(4):287–312.
  • Bender AP, Robison LL, Kashmiri SV, et al. No involvement of bovine leukemia virus in childhood acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Cancer Res. 1988;48(10):2919–2922.
  • Lee J, Kim Y, Kang CS, et al. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea. J Korean Med Sci. 2005;20(4):603–606.
  • Buehring GC, Philpott SM, Choi KY. Humans have antibodies reactive with Bovine leukemia virus. AIDS Res Hum Retroviruses. 2003;19(12):1105–1113.
  • Onuma M, Tsukiyama K, Ohya KI, Morishima Y, Ohno R. Detection of cross-reactive antibody to BLV p24 in sera of human patients infected with HTLV. Microbiol Immunol. 1987;31(2):131–137.
  • Maruyama K, Fukushima T, Mochizuki S. Cross-reactive antibodies to BLV and HTLV in bovine and human hosts with retrovirus infection. Vet Immunol Immunopathol. 1989;22(3):265–273.
  • Zandomeni RO, Carrera-Zandomeni M, Esteban E, Ferrer JF. The trans-activating C-type retroviruses share a distinct epitope(s) that induces antibodies in certain infected hosts. J Gen Virol. 1991;72(Pt 9):2113–2119.
  • Buehring GC, Shen HM, Jensen HM, Choi KY, Sun D, Nuovo G. Bovine leukemia virus DNA in human breast tissue. Emerg Infect Dis. 2014;20(5):772–782.
  • Buehring GC, Shen HM, Jensen HM, Jin DL, Hudes M, Block G. Exposure to bovine leukemia virus is associated with breast cancer: a case-control study. PLoS One. 2015;10(9):e0134304.
  • Zhang R, Jiang J, Sun W, et al. Lack of association between bovine leukemia virus and breast cancer in Chinese patients. Breast Cancer Res. 2016;18(1):101.
  • Gillet NA, Willems L. Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology. 2016;13:75.
  • Tang KW, Alaei-Mahabadi B, Samuelsson T, Lindh M, Larsson E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat Commun. 2013;4:2513.
  • Khoury JD, Tannir NM, Williams MD, et al. Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq. J Virol. 2013;87(16):8916–8926.
  • Hopkins SG, DiGiacomo RF. Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet Clin North Am Food Anim Pract. 1997;13(1):107–128.
  • Lassauzet ML, Thurmond MC, Johnson WO, Holmberg CA. Factors associated with in utero or periparturient transmission of bovine leukemia virus in calves on a California dairy. Can J Vet Res. 1991;55(3):264–268.
  • Romero CH, Cruz GB, Rowe CA. Transmission of bovine leukaemia virus in milk. Trop Anim Health Prod. 1983;15(4):215–218.
  • Juliarena MA, Barrios CN, Ceriani MC, Esteban EN. Hot topic: bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J Dairy Sci. 2016;99(6):4586–4589.
  • Ooshiro M, Konnai S, Katagiri Y, et al. Horizontal transmission of bovine leukemia virus from lymphocytotic cattle, and beneficial effects of insect vector control. Vet Rec. 2013;173(21):527.
  • Anderson RK, Sorensen DK, Perman V, Dirks VA, Snyder MM, Bearman JE. Selected epizootiologic aspects of bovine leukemia in Minnesota (1961–1965). Am J Vet Res. 1971;32:563–577.
  • Rhodes JK, Pelzer KD, Johnson YJ. Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. J Am Vet Med Assoc. 2003;223(3):346–352.
  • Wu MC, Shanks RD, Lewin HA. Milk and fat production in dairy cattle influenced by advanced subclinical bovine leukemia virus infection. Proc Natl Acad Sci U S A. 1989;86(3):993–996.
  • Pollari FL, Wangsuphachart VL, DiGiacomo RF, Evermann JF. Effects of bovine leukemia virus infection on production and reproduction in dairy cattle. Can J Vet Res. 1992;56(4):289–295.
  • Callebaut I, Voneche V, Mager A, et al. Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol. 1993;67(9):5321–5327.
  • Jacobs RM, Heeney JL, Godkin MA, et al. Production and related variables in bovine leukaemia virus-infected cows. Vet Res Commun. 1991;15(6):463–474.
  • Kale M, Bulut O, Yapk O, et al. Effects of subclinical bovine leukemia virus infection on some production parameters in a dairy farm in southern Turkey. J S Afr Vet Assoc. 2007;78(3):130–132.
  • Tiwari A, VanLeeuwen JA, Dohoo IR, et al. Production effects of pathogens causing bovine leukosis, bovine viral diarrhea, paratuberculosis, and neosporosis. J Dairy Sci. 2007;90(2):659–669.
  • Sorge US, Lissemore K, Cantin R, Kelton DF. Short communication: Milk ELISA status for bovine leukosis virus infection is not associated with milk production in dairy cows. J Dairy Sci. 2011;94(10):5062–5064.
  • Erskine RJ, Bartlett PC, Byrem TM, Render CL, Febvay C, Houseman JT. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. J Dairy Sci. 2012;95(2):727–734.
  • Ott SL, Johnson R, Wells SJ. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev Vet Med. 2003;61(4):249–262.
  • Norby B, Bartlett PC, Byrem TM, Erskine RJ. Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. J Dairy Sci. 2016;99(3):2043–2052.
  • Yang Y, Fan W, Mao Y, et al. Bovine leukemia virus infection in cattle of China: association with reduced milk production and increased somatic cell score. J Dairy Sci. 2016;99(5):3688–3697.
  • Nekouei O, VanLeeuwen J, Stryhn H, Kelton D, Keefe G. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med. 2016;133:1–9.
  • Da Y, Shanks RD, Stewart JA, Lewin HA. Milk and fat yields decline in bovine leukemia virus-infected Holstein cattle with persistent lymphocytosis. Proc Natl Acad Sci U S A. 1993;90(14):6538–6541.
  • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389(6649):349–352.
  • Rotili D, Simonetti G, Savarino A, Palamara AT, Migliaccio AR, Mai A. Non-cancer uses of histone deacetylase inhibitors: effects on infectious diseases and beta-hemoglobinopathies. Curr Top Med Chem. 2009;9(3):272–291.
  • Beumer JH, Tawbi H. Role of histone deacetylases and their inhibitors in cancer biology and treatment. Curr Clin Pharmacol. 2010;5(3):196–208.
  • De Souza C, Chatterji BP. HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat Anticancer Drug Discov. 2015;10(2):145–162.
  • Moog C, Kuntz-Simon G, Caussin-Schwemling C, Obert G. Sodium valproate, an anticonvulsant drug, stimulates human immunodeficiency virus type 1 replication independently of glutathione levels. J Gen Virol. 1996;77 (Pt 9):1993–1999.
  • Chen WY, Townes TM. Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc Natl Acad Sci U S A. 2000;97(1):377–382.
  • Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–555.
  • Lezin A, Gillet N, Olindo S, et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood. 2007;110(10):3722–3728.
  • Afonso PV, Mekaouche M, Mortreux F, et al. Highly active antiretroviral treatment against STLV-1 infection combining reverse transcriptase and HDAC inhibitors. Blood. 2010;116(19):3802–3808.
  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734–36741.
  • Achachi A, Florins A, Gillet N, et al. Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc Natl Acad Sci U S A. 2005;102(29):10309–10314.
  • Gillet N, Vandermeers F, de Brogniez A, et al. Chemoresistance to valproate treatment of bovine leukemia virus-infected sheep; Identification of improved HDAC inhibitors. Pathogens. 2012;1(2):65–82.
  • Olindo S, Belrose G, Gillet N, et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood. 2011;118(24):6306–6309.
  • Sagot-Lerolle N, Lamine A, Chaix ML, et al. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 2008;22(10):1125–1129.
  • Archin NM, Cheema M, Parker D, et al. Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PLOS ONE. 2010;5(2):e9390.
  • Routy JP, Tremblay CL, Angel JB, et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med. 2012;13(5):291–296.
  • Boostani R, Vakili R, Hosseiny SS, et al. Triple therapy with prednisolone, pegylated interferon and sodium valproate improves clinical outcome and reduces human T-cell leukemia virus type 1 (HTLV-1) proviral load, tax and HBZ mRNA expression in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Neurotherapeutics. 2015;12(4):887–895.
  • Darcis G, Kula A, Bouchat S, et al. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog. 2015;11(7): e1005063.
  • Callebaut I, Mornon JP, Burny A, Portetelle D. The bovine leukemia virus (BLV) envelope glycoprotein gp51 as a general model for the design of a subunit vaccine against retroviral infection: mapping of functional sites through immunological and structural data. Leukemia. 1994;8(Suppl 1):S218–S221.
  • Altaner C, Altanerova V, Ban J, et al. Cell-derived vaccine against bovine leukaemia virus infection. Zentralbl Veterinarmed B. 1988;35(10):736–746.
  • Altaner C, Ban J, Altanerova V, Janik V. Protective vaccination against bovine leukaemia virus infection by means of cell-derived vaccine. Vaccine. 1991;9(12):889–895.
  • Altaner C, Ban J, Altanerova V, Cerny L. Experimental transmission of the bovine leukaemia virus genome by cell contact. Folia Biol (Praha). 1987;33(6):400–409.
  • Miller JM, Van Der Maaten MJ. Evaluation of an inactivated bovine leukemia virus preparation as an immunogen in cattle. Ann Rech Vet. 1978;9(4):871–877.
  • Fukuyama S, Kodama K, Hirahara T, et al. Protection against bovine leukemia virus infection by use of inactivated vaccines in cattle. J Vet Med Sci. 1993;55(1):99–106.
  • Burkhardt H, Rosenthal S, Wittmann W, et al. [Immunization of young cattle with gp51 of the bovine leukosis virus and the subsequent experimental infection]. Arch Exp Veterinarmed. 1989;43(6):933–942.
  • Cherney TM, Schultz RD. Viral status and antibody response in cattle inoculated with recombinant bovine leukemia virus-vaccinia virus vaccines after challenge exposure with bovine leukemia virus-infected lymphocytes. Am J Vet Res. 1996;57(6):812–818.
  • Ohishi K, Suzuki H, Yamamoto T, et al. Protective immunity against bovine leukaemia virus (BLV) induced in carrier sheep by inoculation with a vaccinia virus-BLV ENV recombinant: association with cell-mediated immunity. J Gen Virol. 1991;72(8):1887–1892.
  • Ohishi K, Suzuki H, Yasutomi Y, et al. Augmentation of bovine leukemia virus (BLV)-specific lymphocyte proliferation responses in ruminants by inoculation with BLV env-recombinant vaccinia virus: their role in the suppression of BLV replication. Microbiol Immunol. 1992;36(12):13171323.
  • Ohishi K, Ikawa Y. T cell-mediated destruction of bovine leukemia virus-infected peripheral lymphocytes by bovine leukemia virus env-vaccinia recombinant vaccine. AIDS Res Hum Retroviruses. 1996;12(5):393–398.
  • Gatei MH, Naif HM, Kumar S, et al. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: correlation of protection with CD4 T-cell response to gp51 peptide 51–70. J Virol. 1993;67(4):1803–1810.
  • Okada K, Ikeyama S, Ohishi K, et al. Involvement of CD8+ T cells in delayed-type hypersensitivity responses against bovine leukemia virus (BLV) induced in sheep vaccinated with recombinant vaccinia virus expressing BLV envelope glycoprotein. Vet Pathol. 1993;30(2):104–110.
  • Ohishi K, Kabeya H, Amanuma H, Onuma M. Peptide-based bovine leukemia virus (BLV) vaccine that induces BLV-Env specific Th-1 type immunity. Leukemia. 1997;11(Suppl 3):223–226.
  • Hislop AD, Good MF, Mateo L, et al. Vaccine-induced cytotoxic T lymphocytes protect against retroviral challenge. Nat Med. 1998;4(10):1193–1196.
  • Portetelle D, Limbach K, Burny A, et al. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine. 1991;9(3):194–200.
  • Pyeon D, Splitter GA. Interleukin-12 p40 mRNA expression in bovine leukemia virus-infected animals: increase in alymphocytosis but decrease in persistent lymphocytosis. J Virol. 1998;72(8):6917–6921.
  • Yakobson B, Brenner J, Ungar-Waron H, Trainin Z. Cellular immune response cytokine expression during the initial stage of bovine leukemia virus (BLV) infection determines the disease progression to persistent lymphocytosis. Comp Immunol Microbiol Infect Dis. 2000;23(3):197–208.
  • Usui T, Konnai S, Ohashi K, Onuma M. Interferon-gamma expression associated with suppression of bovine leukemia virus at the early phase of infection in sheep. Vet Immunol Immunopathol. 2007;115(1–2):17–23.
  • Mateo L, Gardner J, Suhrbier A. Delayed emergence of bovine leukemia virus after vaccination with a protective cytotoxic T cell-based vaccine. AIDS Res Hum Retroviruses. 2001;17(15):1447–1453.
  • Brillowska A, Dabrowski S, Rulka J, Kubis P, Buzala E, Kur J. Protection of cattle against bovine leukemia virus (BLV) infection could be attained by DNA vaccination. Acta Biochim Pol. 1999;46(4):971–976.
  • Usui T, Konnai S, Tajima S, et al. Protective effects of vaccination with bovine leukemia virus (BLV) Tax DNA against BLV infection in sheep. J Vet Med Sci. 2003;65(11):1201–1205.
  • Derse D, Martarano L. Construction of a recombinant bovine leukemia virus vector for analysis of virus infectivity. J Virol. 1990;64(1):401–405.
  • Milan D, Nicolas JF. Activator-dependent and activator-independent defective recombinant retroviruses from bovine leukemia virus. J Virol. 1991;65(4):1938–1945.
  • Boris-Lawrie K, Altanerova V, Altaner C, Kucerova L, Temin HM. In vivo study of genetically simplified bovine leukemia virus derivatives that lack tax and rex. J Virol. 1997;71(2):1514–1520.
  • Kerkhofs P, Gatot JS, Knapen K, et al. Long-term protection against bovine leukaemia virus replication in cattle and sheep. J Gen Virol. 2000;81(Pt 4):957–963.
  • Willems L, Chen G, Portetelle D, Mamoun R, Burny A, Kettmann R. Structural and functional characterization of mutants of the bovine leukemia virus transactivator protein p34. Virology. 1989;171(2):615–618.
  • Willems L, Kettmann R, Dequiedt F, et al. In vivo infection of sheep by bovine leukemia virus mutants. J Virol. 1993;67(7):4078–4085.
  • Boris-Lawrie K, Temin HM. Genetically simpler bovine leukemia virus derivatives can replicate independently of Tax and Rex. J Virol. 1995;69(3):1920–1924.
  • Kucerova L, Altanerova V, Altaner C, Boris-Lawrie K. Bovine leukemia virus structural gene vectors are immunogenic and lack pathogenicity in a rabbit model. J Virol. 1999;73(10):8160–8166.
  • Altanerova V, Holicova D, Kucerova L, Altaner C, Lairmore MD, Boris-Lawrie K. Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology. 2004;329(2):434–439.
  • Gatot JS, Callebaut I, Mornon JP, et al. Conservative mutations in the immunosuppressive region of the bovine leukemia virus transmembrane protein affect fusion but not infectivity in vivo. J Biol Chem. 1998;273(21):12870–12880.
  • Rodriguez SM, Florins A, Gillet N, et al. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses. 2011;3(7):1210–1248.
  • Dequiedt F, Hanon E, Kerkhofs P, et al. Both wild-type and strongly attenuated bovine leukemia viruses protect peripheral blood mononuclear cells from apoptosis. J Virol. 1997;71(1):630–639.
  • Reichert M, Cantor GH, Willems L, Kettmann R. Protective effects of a live attenuated bovine leukaemia virus vaccine with deletion in the R3 and G4 genes. J Gen Virol. 2000;81(Pt 4):965–969.
  • Asfaw Y, Tsuduku S, Konishi M, et al. Distribution and superinfection of bovine leukemia virus genotypes in Japan. Arch Virol. 2005;150(3):493–505.
  • Gutierrez G, Rodriguez SM, de Brogniez A, et al. Vaccination against delta-retroviruses: the bovine leukemia virus paradigm. Viruses. 2014;6(6):2416–2427.
  • Dong B, Silverman RH, Kandel ES. A natural human retrovirus efficiently complements vectors based on murine leukemia virus. PLoS One. 2008;3(9):e3144.
  • Lee SW, Markham PF, Coppo MJ, et al. Attenuated vaccines can recombine to form virulent field viruses. Science. 2012;337(6091):188.
  • Watanabe T, Inoue E, Mori H, Osawa Y, Okazaki K. Delayed-onset enzootic bovine leukosis possibly caused by superinfection with bovine leukemia virus mutated in the pol gene. Arch Virol. 2015;160(8):2087–2091.
  • Iwabu Y, Goto T, Tsuji S, et al. Superinfection of human immunodeficiency virus type 1 (HIV-1) to cell clone persistently infected with defective virus induces production of highly cytopathogenic HIV-1. Microbes Infect. 2006;8(7):1773–1782.
  • Iwabu Y, Mizuta H, Kawase M, Kameoka M, Goto T, Ikuta K. Superinfection of defective human immunodeficiency virus type 1 with different subtypes of wild-type virus efficiently produces infectious variants with the initial viral phenotypes by complementation followed by recombination. Microbes Infect. 2008;10(5):504–513.
  • Ferrer JF. Bovine leukosis: natural transmission and principles of control. J Am Vet Med Assoc. 1979;175(12):1281–1286.
  • DiGiacomo RF. The epidemiology and control of bovine leukemia virus infection. Veterinary Medicine. 1992;87:248–257.
  • Bartlett PC, Sordillo LM, Byrem TM, et al. Options for the control of bovine leukemia virus in dairy cattle. J Am Vet Med Assoc. 2014;244(8):914–922.
  • Eaglesome MD, Mitchell D, Betteridge KJ, et al. Transfer of embryos from bovine leukaemia virus-infected cattle to uninfected recipients: preliminary results. Vet Rec. 1982;111(6):122–123.
  • DiGiacomo RF, Studer E, Evermann JF, Evered J. Embryo transfer and transmission of bovine leukosis virus in a dairy herd. J Am Vet Med Assoc. 1986;188(8):827–828.
  • DiGiacomo RF, McGinnis LK, Studer E, Evermann JF. Failure of embryo transfer to transmit BLV in a dairy herd. Vet Rec. 1990;127(18):456.
  • Suh GH, Lee JC, Lee CY, et al. Establishment of a bovine leukemia virus-free dairy herd in Korea. J Vet Sci. 2005;6(3):227–230.
  • Shettigara PT, Samagh BS, Lobinowich EM. Control of bovine leukemia virus infection in dairy herds by agar gel immunodiffusion test and segregation of reactors. Can J Vet Res. 1989;53(1):108–110.
  • Lassauzet ML, Johnson WO, Thurmond MC, Stevens F. Protection of colostral antibodies against bovine leukemia virus infection in calves on a California dairy. Can J Vet Res. 1989;53(4):424–430.
  • Nagy DW, Tyler JW, Kleiboeker SB. Decreased periparturient transmission of bovine leukosis virus in colostrum-fed calves. J Vet Intern Med. 2007;21(5):1104–1107.
  • Van Der Maaten MJ, Miller JM, Schmerr MJ. Effect of colostral antibody on bovine leukemia virus infection of neonatal calves. Am J Vet Res. 1981;42(9):1498–1500.
  • Sprecher DJ, Pelzer KD, Lessard P. Possible effect of altered management practices on seroprevalence of bovine leukemia virus in heifers of a dairy herd with history of high prevalence of infection. J Am Vet Med Assoc. 1991;199(5):584–588.
  • Gutiérrez SE, Esteban EN, Lützelschwab CM, Juliarena MA.. Major histocompatibility complex-associated resistance to infectious diseases: the case of bovine leukemia virus infection. In: Abubakar M, editor. Trends and Advances in Veterinary Genetics. Croatia: InTech; 2017.
  • Lewin HA. Disease resistance and immune response genes in cattle: strategies for their detection and evidence of their existence. J Dairy Sci. 1989;72(5):1334–1348.
  • Xu A, van Eijk MJ, Park C, Lewin HA. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J Immunol. 1993;151(12):6977–6985.
  • Zanotti M, Poli G, Ponti W, et al. Association of BoLA class II haplotypes with subclinical progression of bovine leukaemia virus infection in Holstein-Friesian cattle. Anim Genet. 1996;27(5):337–341.
  • IPD. Immuno Polymorphism Database - MHC Database. BoLA Nomenclature, Cattle, BoLA DRB3. Available from https://www.ebi.ac.uk/cgi-bin/ipd/mhc/view_nomenclature.cgi?bola.drb3. Accessed July 05, 2016.
  • Mirsky ML, Olmstead C, Da Y, Lewin HA. Reduced bovine leukaemia virus proviral load in genetically resistant cattle. Anim Genet. 1998;29(4):245–252.
  • Juliarena MA, Poli M, Sala L, et al. Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Anim Genet. 2008;39(4):432–438.
  • Miyasaka T, Takeshima SN, Jimba M, et al. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. Tissue Antigens. 2012;81(2):72–82.
  • Esteban EN, Poli M, Poiesz B, et al. Bovine leukemia virus (BLV), proposed control and eradication programs by marker assisted breeding of genetically resistant cattle. In: Rechi LJ, editor. Animal Genetics. Hauppauge, NY: Nova Science Publishers, Inc.; 2009:107–130.
  • Juliarena MA, Poli M, Ceriani C, et al. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J Dairy Sci. 2009;92(1):375–381.
  • Juliarena M. Aportes al estudio del rol del virus y del hospedador en el perfil de infección causado por el virus de la leucosis bovina. Tesis Doctoral. FCV-UNCPBA. 2008.
  • Miyasaka T, Takeshima SN, Sentsui H, Aida Y. Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese Black and Holstein cattle in Japan. J Dairy Sci. 2012;95(1):420–431.
  • Dietz AB, Cohen ND, Timms L, Kehrli ME, Jr. Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. J Dairy Sci. 1997;80(2):406–412.
  • Rupp R, Hernandez A, Mallard BA. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci. 2007;90(2):1029–1038.
  • Sharif S, Mallard BA, Wilkie BN, et al. Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim Genet. 1998;29(3):185-193.
  • Nassiry MR, Shahroodi FE, Mosafer J, et al. Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle. Genetika. 2005;41(6):817–822.
  • Lützelschwab CM, Forletti A, Cepeda R, Esteban EN, Confalonieri O, Gutiérrez SE. Co-infection with Mycobacterium bovis does not alter the response to bovine leukemia virus in BoLA DRB3*0902, genetically resistant cattle. Res Vet Sci. 2016;109:10–16.
  • Forletti A, Juliarena MA, Ceriani C, Amadio AF, Esteban E, Gutierrez SE. Identification of cattle carrying alleles associated with resistance and susceptibility to the bovine leukemia virus progression by real-time PCR. Res Vet Sci. 2013;95(3):991–995.