58
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive review on the functional role of miRNA clusters in cervical cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 493-511 | Received 08 Jul 2023, Accepted 04 Mar 2024, Published online: 21 Mar 2024

References

  • Hasan MT , IslamMR, IslamMR et al. Systematic approach to identify therapeutic targets and functional pathways for the cervical cancer. J. Genet. Eng. Biotechnol.21(1), 10 (2023).
  • Sung H , FerlayJ, SiegelRL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Mehrotra R , YadavK. Cervical cancer: formulation and implementation of govt of India guidelines for screening and management. Indian J. Gynecol. Oncol.20(1), 4 (2022).
  • Arbyn M , WeiderpassE, BruniL et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob. Health8(2), e191–e203 (2020).
  • Bovo AC , PedrãoPG, GuimarãesYM et al. Combined oral contraceptive use and the risk of cervical cancer: literature review. Rev. Bras. Ginecol. Obstet.45(12), e818–e824 (2023).
  • Zhang X , LvZ, XuX, YinZ, LouH. Comparison of adenocarcinoma and adenosquamous carcinoma prognoses in Chinese patients with FIGO stage IB-IIA cervical cancer following radical surgery. BMC Cancer20(1), 664 (2020).
  • Koliopoulos G , NyagaVN, SantessoN et al. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst. Rev.2018(7), CD008587 (2017).
  • Arora R , MalikA, ZutshiV, BachaniS. Comparison of cervical biopsy using punch biopsy forceps versus loop electrode. Int. J. Clin. Biomed. Res.72(Suppl. 1), 248–254 (2018).
  • Bhatla N , AokiD, SharmaDN, SankaranarayananR. Cancer of the cervix uteri: 2021 update. Int. J. Gynecol. Obstet.155(S1), 28–44 (2021).
  • Harper DM , PlegueM, SenA et al. Predictors of screening for cervical and colorectal cancer in women 50–65 years old in a multi-ethnic population. Prev. Med. Rep.22, 101375 (2021).
  • Burmeister CA , KhanSF, SchäferG et al. Cervical cancer therapies: current challenges and future perspectives. Tumour Virus Res.13, 200238 (2022).
  • Albulescu A , PlesaA, FuduluA, IancuI, AntonG, BotezatuA. Epigenetic approaches for cervical neoplasia screening. Exp. Ther. Med.22(6), 1481 (2021).
  • Alfaro-Mora Y . HerreraAL, Cáceres-GutiérrezR, Andonegui-ElgueraAM, Dominguez-GómezG, Díaz-ChávezJ. The role of epigenetics in cervical cancer. In: Gynaecological Malignancies – Updates and Advances.IntechOpen, London, UK, 1–19 (2020).
  • Zhu H , ZhuH, TianM, WangD, HeJ, XuT. DNA methylation and hydroxymethylation in cervical cancer: diagnosis, prognosis and treatment. Front. Genet. 11, 347 (2020).
  • Kabekkodu SP , ShuklaV, VargheseVK, D’SouzaJ, ChakrabartyS, SatyamoorthyK. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev.93(4), 1955–1986 (2018).
  • Causin RL , de FreitasAJA, TrovoHidalgo Filho CM, dos ReisR, ReisRM, MarquesMMC. A systematic review of microRNAs involved in cervical cancer progression. Cells10(3), 668 (2021).
  • Wang Y , LuoJ, ZhangH, LuJ. MicroRNAs in the same clusters evolve to coordinately regulate functionally related genes. Mol. Biol. Evol.33(9), 2232–2247 (2016).
  • Kabekkodu SP , ShuklaV, VargheseVK et al. Cluster miRNAs and cancer: diagnostic, prognostic and therapeutic opportunities. Wiley Interdiscip,. Rev. RNA11(2, e1563 (2020).
  • Cáceres-Durán MÁ , Ribeiro-dos-SantosÂ, VidalAF. Roles and mechanisms of the long noncoding RNAs in cervical cancer. Int. J. Mol. Sci.21(24), 9742 (2020).
  • Otmani K , LewalleP. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front. Oncol.11, 708765 (2021).
  • Varghese VK , ShuklaV, KabekkoduSP, PandeyD, SatyamoorthyK. DNA methylation regulated microRNAs in human cervical cancer. Mol. Carcinog.57(3), 370–382 (2018).
  • Bhat S , KabekkoduSP, VargheseVK et al. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumor Biol.39(3), 101042831769457 (2017).
  • Chen S , WangY, LiD et al. Mechanisms controlling microRNA expression in tumor. Cells11(18), 2852 (2022).
  • Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet.10(10), 704–714 (2009).
  • Gregorova J , Vychytilova-FaltejskovaP, SevcikovaS. Epigenetic regulation of microRNA clusters and families during tumor development. Cancers (Basel)13(6), 1333 (2021).
  • Peng Y , CroceCM. The role of microRNAs in human cancer. Signal Transduct. Target. Ther.1(1), 15004 (2016).
  • Liu X . Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed. Pharmacother.102, 996–1002 (2018).
  • Xu R , ZhangX, XuY, WangJ, LiZ, CuiX. Long noncoding RNA MST1P2 promotes cervical cancer progression by sponging with microRNA miR-133b. Bioengineered12(1), 1851–1860 (2021).
  • Sun Y , YangX, LiuM, TangH. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett.375(2), 284–292 (2016).
  • Zhou C-F , MaJ, HuangL et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene38(8), 1256–1268 (2019).
  • Kandettu A , AdigaD, DeviV et al. Deregulated miRNA clusters in ovarian cancer: imperative implications in personalized medicine. Genes Dis.9(6), 1443–1465 (2022).
  • Zhou Y , AnQ, GuoR et al. miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life Sci.171, 9–15 (2017).
  • Xu J , LiY, WangF et al. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene32(8), 976–987 (2013).
  • Yang L , LiuL, ZhangX et al. miR-96 enhances the proliferation of cervical cancer cells by targeting FOXO1. Pathol. Res. Pract.216(4), 152854 (2020).
  • Shang C , LiY, HeT et al. The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer. J. Adv. Res.37, 169–184 (2022).
  • Liu X , ZhouY, NingY, GuH, TongY, WangN. miR-195-5p inhibits malignant progression of cervical cancer by targeting YAP1. Onco Targets Ther.13, 931–944 (2020).
  • Zhang L , WuX, LiY, TengX, ZouL, YuB. lncRNA SNHG5 promotes cervical cancer progression by regulating the miR-132/SOX4 pathway. Autoimmunity54(2), 88–96 (2021).
  • Shi C , ZhangZ. MicroRNA-362 is downregulated in cervical cancer and inhibits cell proliferation, migration and invasion by directly targeting SIX1. Oncol. Rep.37(1), 501–509 (2017).
  • Zhang S , LiuF, MaoX et al. Elevation of miR-27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells. Int. J. Oncol.47(5), 1759–1766 (2015).
  • Su X , LangC, LuanA, ZhaoP. miR-200a promotes proliferation of cervical cancer cells by regulating HIF-1α/VEGF signaling pathway. J. BUON25(4), 1935–1940 (2020).
  • Fuziwara CS , KimuraET. Insights into regulation of the miR-17-92 cluster of miRNAs in cancer. Front. Med.2, 64 (2015).
  • Morgan EL , PattersonMR, RyderEL et al. MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathog.16(6), e1008624 (2020).
  • Wang Y , WangY, ZhongW, GulinaK. Correlation between miR-19a inhibition and radiosensitivity in SiHa cervical cancer cells. J. BUON22(6), 1505–1508 (2017).
  • Song J , LiY. miR-25-3p reverses epithelial–mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. Cancer Sci.108(1), 23–31 (2017).
  • Yucel Polat A , AyvaES, GurdalH, OzdemirBH, GurDedeoglu B. miR-25 and KLF4 relationship has early prognostic significance in the development of cervical cancer. Pathol. Res. Pract.222, 153435 (2021).
  • Chen X , YangJ, WangY. lncRNA JPX promotes cervical cancer progression by modulating miR-25-3p/SOX4 axis. Cancer Cell Int.20(1), 441 (2020).
  • Raji GR , SruthiTV, EdattL, HarithaK, SharathShankar S, SameerKumar VB. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell. Signal.38, 146–158 (2017).
  • Szekerczés T , GalambÁ, VargaN et al. Increased miR-20b level in high grade cervical intraepithelial neoplasia. Pathol. Oncol. Res.26(4), 2633–2640 (2020).
  • Cheng Y , GengL, ZhaoL, ZuoP, WangJ. Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol. Med. Rep.16(4), 5464–5470 (2017).
  • Jiang L , WangX. The miR-133b/brefeldin A-inhibited guanine nucleotide-exchange protein 1 (ARFGEF1) axis represses proliferation, invasion, and migration in cervical cancer cells. Bioengineered13(2), 3323–3332 (2022).
  • Wang Z , WangW, ZhaoW et al. Folate inhibits miR-27a-3p expression during cervical carcinoma progression and oncogenic activity in human cervical cancer cells. Biomed. Pharmacother.122, 109654 (2020).
  • Wang F , LiangR, TandonN et al. H19X-encoded miR-424(322)/-503 cluster: emerging roles in cell differentiation, proliferation, plasticity and metabolism. Cell. Mol. Life Sci.76(5), 903–920 (2019).
  • Chen X , LiuJ, HaoX, YanL, GaoF. The miR-424/miR-503 microRNA cluster prevents the malignant phenotype in cervical cancer cells by negatively regulating CCND1. Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.10.029 (2020) ( Preprint).
  • Sun Y , ZhangB, ChengJ et al. MicroRNA-222 promotes the proliferation and migration of cervical cancer cells. Clin. Invest. Med.37(3), 131 (2014).
  • Ding N , LuY, ZhuS-L et al. miR-17 promotes cervical squamous cell tumorigenesis and metastasis by targeting E2F1. Int. J. Clin. Exp. Pathol.9(10), 10224–10232 (2016).
  • Singh G , SharmaSK, DorataA, SinghSK. miR-17∼92 suppresses proliferation and invasion of cervical cancer cells by inhibiting cell cycle regulator Cdt2. Discov. Oncol.14(1), 172 (2023).
  • Ou L , XiangT-Y, HaoX-Y, WangD-Z, ZengQ. Reduced long non-coding RNA PTENP1 contributed to proliferation and invasion via miR-19b/MTUS1 axis in patients with cervical cancer. Eur. Rev. Med. Pharmacol. Sci.24(8), 4132–4144 (2020).
  • Wang Y , ChenA, ZhengC, ZhaoL. miR-92a promotes cervical cancer cell proliferation, invasion, and migration by directly targeting PIK3R1. J. Clin. Lab. Anal.35(8), e23893 (2021).
  • Sun X-Y , HanX-M, ZhaoX-L, ChengX-M, ZhangY. miR-93-5p promotes cervical cancer progression by targeting THBS2/MMPS signal pathway. Eur. Rev. Med. Pharmacol. Sci.23(12), 5113–5121 (2019).
  • Fan Y , ShengW, MengY, CaoY, LiR. lncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif. Cells Nanomed. Biotechnol.48(1), 393–407 (2020).
  • Piao J , YouK, GuoY, ZhangY, LiZ, GengL. Substrate stiffness affects epithelial–mesenchymal transition of cervical cancer cells through miR-106b and its target protein DAB2. Int. J. Oncol.50(6), 2033–2042 (2017).
  • Li J , ChuZ-P, HanH et al. Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum. Cell32(2), 160–171 (2019).
  • Gao J , LiuL, LiG et al. lncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int. J. Biol. Macromol.126, 994–1001 (2019).
  • Cui X , WangX, ZhouX, JiaJ, ChenH, ZhaoW. miR-106a regulates cell proliferation and autophagy by targeting LKB1 in HPV-16-associated cervical cancer. Mol. Cancer Res.18(8), 1129–1141 (2020).
  • Lai Y , ZhouB, TanQ, XuJ, WanT, ZhangL. LINC00116 enhances cervical cancer tumorigenesis through miR-106a/c-Jun pathway. J. Cell. Biochem.121(3), 2247–2257 (2020).
  • Li X , ZhouQ, TaoL, YuC. MicroRNA-106a promotes cell migration and invasion by targeting tissue inhibitor of matrix metalloproteinase 2 in cervical cancer. Oncol. Rep.38(3), 1774–1782 (2017).
  • Li D , XiaL, ChenM et al. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget8(30), 50193–50208 (2017).
  • Wang Y , TianY. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Oncol. Res.26(6), 923–931 (2018).
  • Chen A-H , QinY-E, TangW-F, TaoJ, SongH, ZuoM. miR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int.17(1), 63 (2017).
  • Ji N , WangY, BaoG, YanJ, JiS. lncRNA SNHG14 promotes the progression of cervical cancer by regulating miR-206/YWHAZ. Pathol. Res. Pract.215(4), 668–675 (2019).
  • Chen X , ZhangZ, MaY, SuH, XieP, RanJ. LINC02381 promoted cell viability and migration via targeting miR-133b in cervical cancer cells. Cancer Manag. Res.12, 3971–3979 (2020).
  • Wang N , TanH-Y, FengY-G, ZhangC, ChenF, FengY. microRNA-23a in human cancer: its roles, mechanisms and therapeutic relevance. Cancers (Basel)11(1), 7 (2018).
  • Zhou X , ZhaoX, WuZ, MaY, LiH. lncRNA FLVCR1-AS1 mediates miR-23a-5p/SLC7A11 axis to promote malignant behavior of cervical cancer cells. Bioengineered13(4), 10454–10466 (2022).
  • Ben W , ZhangG, HuangY, SunY. miR-27a-3p regulated the aggressive phenotypes of cervical cancer by targeting FBXW7. Cancer Manag. Res.12, 2925–2935 (2020).
  • Li S , HanY, LiangX, ZhaoM. LINC01089 inhibits the progression of cervical cancer via inhibiting miR-27a-3p and increasing BTG2. J. Gene Med.23(1), e3280 (2021).
  • Song J , OuyangY, CheJ et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front. Immunol.8, 56 (2017).
  • Du J , WangL, LiC et al. MicroRNA-221 targets PTEN to reduce the sensitivity of cervical cancer cells to gefitinib through the PI3K/Akt signaling pathway. Tumour Biol.37(3), 3939–3947 (2016).
  • Yang Y , ZhaoX, LiH-X. miR-221 and miR-222 simultaneously target ARID1A and enhance proliferation and invasion of cervical cancer cells. Eur. Rev. Med. Pharmacol. Sci.20(8), 1509–1515 (2016).
  • Xu J , FangY, WangX et al. CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis. Oncotarget7(21), 31520–31533 (2016).
  • Fu Y , MengY, GuX, TianS, HouX, JiM. miR-503 expression is downregulated in cervical cancer and suppresses tumor growth by targeting AKT2. J. Cell. Biochem.120(5), 8177–8184 (2019).
  • Wang A-H , JinC-H, CuiG-Y et al. miR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer. Aging12(4), 3205–3217 (2020).
  • Han H , ShaoQ, LiuX. LINC00441 promotes cervical cancer progression by modulating miR-450b-5p/RAB10 axis. Cancer Cell Int.20(1), 368 (2020).
  • Yang G , XiongG, CaoZ et al. miR-497 expression, function and clinical application in cancer. Oncotarget7(34), 55900–55911 (2016).
  • Li Y , GaoX, YangC, YanH, LiC. circRNA hsa_circ_0018289 exerts an oncogenic role in cervical cancer progression through miR-1294/ICMT axis. J. Clin. Lab. Anal.36(5), e24348 (2022).
  • Lu M , GaoQ, WangY, RenJ, ZhangT. LINC00511 promotes cervical cancer progression by regulating the miR-497-5p/MAPK1 axis. Apoptosis27(11–12), 800–811 (2022).
  • Zhou Q , HanLR, ZhouYX, LiY. MiR-195 Suppresses Cervical Cancer Migration and Invasion Through Targeting Smad3. Int J Gynecol Cancer.26(5), 817–824 (2016).
  • Gao Z , ZhuX, DouY. The miR-302/367 cluster: a comprehensive update on its evolution and functions. Open Biol.5(12), 150138 (2015).
  • Cai N , WangY-D, ZhengP-S. The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA19(1), 85–95 (2013).
  • Yang X , QuY, ZhangJ. Up-regulated lncRNA FEZF1-AS1 promotes the progression of cervical carcinoma cells via miR-367-3p/SLC12A5 signal axis. Arch. Med. Res.53(1), 9–19 (2022).
  • Wang J , ChenS. RACK1 promotes miR-302b/c/d-3p expression and inhibits CCNO expression to induce cell apoptosis in cervical squamous cell carcinoma. Cancer Cell Int.20(1), 385 (2020).
  • Wanet A , TachenyA, ArnouldT, RenardP. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res.40(11), 4742–4753 (2012).
  • Zhao J-L , ZhangL, GuoX et al. miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life67(5), 380–394 (2015).
  • Zhou C , TanD-M, ChenL et al. Effect of miR-212 targeting TCF7L2 on the proliferation and metastasis of cervical cancer. Eur. Rev. Med. Pharmacol. Sci.21(2), 219–226 (2017).
  • Ou R , ZhuL, ZhaoL et al. HPV16 E7-induced upregulation of KDM2A promotes cervical cancer progression by regulating miR-132–radixin pathway. J. Cell. Physiol.234(3), 2659–2671 (2019).
  • Ma Y , LiangA-J, FanY-P et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget7(27), 42805–42825 (2106).
  • Bai X , WangW, ZhaoP et al. lncRNA CRNDE acts as an oncogene in cervical cancer through sponging miR-183 to regulate CCNB1 expression. Carcinogenesis41(1), 111–121 (2020).
  • Zou H , ChenH, LiuS, GanX. Identification of a novel circ_0018289/miR-183-5p/TMED5 regulatory network in cervical cancer development. World J. Surg. Oncol.19(1), 246 (2021).
  • Zhang W , ZhangM, LiuL, JinD, WangP, HuJ. MicroRNA-183-5p inhibits aggressiveness of cervical cancer cells by targeting integrin subunit beta 1 (ITGB1). Med. Sci. Monit.24, 7137–7145 (2018).
  • Zhang H , ChenR, ShaoJ. MicroRNA-96-5p facilitates the viability, migration, and invasion and suppresses the apoptosis of cervical cancer cells by negatively modulating SFRP4. Technol. Cancer Res. Treat.19, 153303382093413 (2020).
  • Sun J , JiJ, HuoG, SongQ, ZhangX. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol.8(5), 4755–63 (2015).
  • Zhang Q , ZhengJ, LiuL. The long noncoding RNA PCGEM1 promotes cell proliferation, migration and invasion via targeting the miR-182/FBXW11 axis in cervical cancer. Cancer Cell Int.19(1), 304 (2019).
  • Chen J , DengY, AoL et al. The high-risk HPV oncogene E7 upregulates miR-182 expression through the TGF-β/Smad pathway in cervical cancer. Cancer Lett.460, 75–85 (2019).
  • Zhu J , HanS. DARS-AS1 knockdown inhibits the growth of cervical cancer cells via downregulating HMGB1 via sponging miR-188-5p. Technol. Cancer Res. Treat19, 153303382097166 (2020).
  • Yang S , ZhangX, SunY et al. MicroRNA-362-3p inhibits migration and invasion via targeting BCAP31 in cervical cancer. Front. Mol. Biosci.7, 107 (2020).
  • Song L , LiuS, YaoH et al. miR-362-3p is downregulated by promoter methylation and independently predicts shorter OS of cervical squamous cell carcinoma. Biomed. Pharmacother.115, 108944 (2019).
  • Wang D , WangH, LiY, LiQ. miR-362-3p functions as a tumor suppressor through targeting MCM5 in cervical adenocarcinoma. Biosci. Rep.38(3), BSR20180668 (2018).
  • Campos-Viguri GE , Jiménez-WencesH, Peralta-ZaragozaO et al. miR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infect. Agent. Cancer10(1), 42 (2015).
  • Yeung CLA , TsangTY, YauPL, KwokTT. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget8(7), 12158–12173 (2017).
  • Li Y-M , LiX-J, YangH-L, ZhangY-B, LiJ-C. MicroRNA-23b suppresses cervical cancer biological progression by directly targeting SIX1 and affecting epithelial-to-mesenchymal transition and AKT/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci.23(11), 4688–4697 (2019).
  • Yao J , DengB, ZhengL, DouL, GuoY, GuoK. miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial–mesenchymal transition. Oncol. Rep.35(3), 1645–1651 (2016).
  • Cheng Y-X , ChenG-T, ChenC et al. MicroRNA-200b inhibits epithelial–mesenchymal transition and migration of cervical cancer cells by directly targeting RhoE. Mol. Med. Rep.13(4), 3139–3146 (2016).
  • Zhang S , ZhangG, LiuJ. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS124(8), 649–658 (2016).
  • Zeng F , XueM, XiaoT et al. miR-200b promotes the cell proliferation and metastasis of cervical cancer by inhibiting FOXG1. Biomed. Pharmacother.79, 294–301 (2016).
  • Fan J , FanY, WangX et al. miR-429 is involved in regulation of NF-κB activity by targeting IKKβ and suppresses oncogenic activity in cervical cancer cells. FEBS Lett.591(1), 118–128 (2017).
  • Liu C , TianX, ZhangJ, JiangL. Long non-coding RNA DLEU1 promotes proliferation and invasion by interacting with miR-381 and enhancing HOXA13 expression in cervical cancer. Front. Genet.9, 629 (2018).
  • Tan Y , WangH, ZhangC. MicroRNA-381 targets G protein-coupled receptor 34 (GPR34) to regulate the growth, migration and invasion of human cervical cancer cells. Environ. Toxicol. Pharmacol.81, 103514 (2021).
  • Shang A , ZhouC, BianG et al. miR-381-3p restrains cervical cancer progression by downregulating FGF7. J. Cell. Biochem.120(1), 778–789 (2019).
  • Sun Y , ChengY, ZhangY, HanK. MicroRNA-889-3p targets FGFR2 to inhibit cervical cancer cell viability and invasion. Exp. Ther. Med.18(2), 1440–1448 (2019).
  • Zhao X , DongW, LuoG, XieJ, LiuJ, YuF. Silencing of hsa_circ_0009035 suppresses cervical cancer progression and enhances radiosensitivity through microRNA-889-3p-dependent regulation of HOXB7. Mol. Cell. Biol.41(6), 1–17 (2021).
  • Guo H , LiJ, FanF, ZhouP. LINC00707 regulates miR-382-5p/VEGFA pathway to enhance cervical cancer progression. J. Immunol. Res.2021, 1–14 (2021).
  • Zhao D , ZhangH, LongJ, LiM. lncRNA SNHG7 functions as an oncogene in cervical cancer by sponging miR-485-5p to modulate JUND expression. Onco Targets Ther.13, 1677–1689 (2020).
  • Liu J , LiuX, LiR. lncRNA SNHG6 enhances the radioresistance and promotes the growth of cervical cancer cells by sponging miR-485-3p. Cancer Cell Int.20(1), 424 (2020).
  • Zhao W , LiuY, ZhangL et al. MicroRNA-154-5p regulates the HPV16 E7-pRb pathway in cervical carcinogenesis by targeting CUL2. J. Cancer11(18), 5379–5389 (2020).
  • Ye C , HuY, WangJ. MicroRNA-377 targets zinc finger E-box-binding homeobox 2 to inhibit cell proliferation and invasion of cervical cancer. Oncol. Res.27(2), 183–192 (2019).
  • Zhang Y , LiuY, GuoX, HuZ, ShiH. Interfering Human Papillomavirus E6/E7 Oncogenes in Cervical Cancer Cells Inhibits the Angiogenesis of Vascular Endothelial Cells via Increasing miR-377 in Cervical Cancer Cell-Derived Microvesicles. Onco Targets Ther.13, 4145–4155 (2020).
  • Zhang X-Y , DongX-M, WangF-P. miR-377-3p inhibits cell metastasis and epithelial–mesenchymal transition in cervical carcinoma through targeting SGK3. Eur. Rev. Med. Pharmacol. Sci.24(9), 4687–4696 (2020).
  • Li W , YangB, LiY, WangC, FangX. Significance of miR-141 and miR-340 in cervical squamous cell carcinoma. Open Med.16(1), 864–872 (2021).
  • Yu F , LiuJ, DongW, XieJ, ZhaoX. The diagnostic value of miR-145 and miR-205 in patients with cervical cancer. Am. J. Transl. Res.13(3), 1825–1832 (2021).
  • Ruan F , WangYF, ChaiY. Diagnostic values of miR-21, miR-124, and M-CSF in patients with early cervical cancer. Technol. Cancer Res. Treat.19, 1533033820914983 (2020).
  • Zhang Y , QiuS, GuoY, ZhangJ, WuX, HongG. Diagnostic value of vaginal microecology, serum miR-18a, and PD-L1 for identifying HPV-positive cervical cancer. Technol. Cancer Res. Treat.20, 1533033821995281 (2021).
  • Yang D , ZhangQ. miR-152 may function as an early diagnostic and prognostic biomarker in patients with cervical intraepithelial neoplasia and patients with cervical cancer. Oncol. Lett.17(6), 5693–5698 (2019).
  • Gadkari R , RaviR, BhatiaJK. Cervical Cancers: Varieties and the Lower Anogenital Squamous Terminology. Cytojournal19, 39 (2022).
  • Cibula D , PötterR, PlanchampF et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. International Journal of Gynecologic Cancer28(4), 641–655 (2018).
  • Huang J , NiS, TangR. A functional polymorphism in the promoter of miR-17-92 is associated with a reduced risk of cervical squamous cell carcinoma. Reprod. Sci.27(1), 87–92 (2020).
  • Zubillaga-Guerrero MI , DelL, Alarcón-RomeroC et al. MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells. Int. J. Clin. Exp. Med.8(9), 15999–16006 (2015).
  • Wu N , SongH, RenY, TaoS, LiS. DGUOK-AS1 promotes cell proliferation in cervical cancer via acting as a ceRNA of miR-653-5p. Cell Biochem. Funct.38(7), 870–879 (2020).
  • Schubert M , BauerschlagDO, MuallemMZ, MaassN, AlkatoutI. Challenges in the Diagnosis and Individualized Treatment of Cervical Cancer. Medicina (B Aires)59(5), 925 (2023).
  • Kandettu A , RadhakrishnanR, ChakrabartyS, SriharikrishnaaS, KabekkoduSP. The emerging role of miRNA clusters in breast cancer progression. Biochim. Biophys Acta Rev. Cancer1874(2), 188413 (2020).
  • Srinath S , JishnuPV, VargheseVK et al. Regulation and tumor-suppressive function of the miR-379/miR-656 (C14MC) cluster in cervical cancer. Mol. Oncol. doi: 10.1002/1878-0261.13611 (2024) ( Epub ahead of print).
  • Zhang Y , QiuS, GuoY, ZhangJ, WuX, HongG. Diagnostic value of vaginal microecology, serum miR-18a, and PD-L1 for Identifying HPV-Positive Cervical Cancer. Technol. Cancer Res. Treat.20, 1533033821995281 (2021).
  • Wei H , Wen-MingC, Jun-BoJ. Plasma miR-145 as a novel biomarker for the diagnosis and radiosensitivity prediction of human cervical cancer. J. Int. Med. Res.45(3), 1054–1060 (2017).
  • Simmons CPL , McMillanDC, McWilliamsK et al. Prognostic tools in patients with advanced cancer: a systematic review. J. Pain Symptom Manage.53(5), 962–970; e10 (2017).
  • Xu W , HuaY, DengF et al. miR-145 in cancer therapy resistance and sensitivity: a comprehensive review. Cancer Sci.111(9), 3122–3131 (2020).
  • Liu L , LaiX, YuanC et al. Aberrant expression of miR-153 is associated with the poor prognosis of cervical cancer. Oncol. Lett.15(6), 9183–9187 (2018).
  • George IA , ChauhanR, DhawaleRE et al. Insights into therapy resistance in cervical cancer. Adv. Cancer Biol. Metastasis6, 100074 (2022).
  • Zhu H , LuoH, ZhangW, ShenZ, HuX, ZhuX. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des. Devel. Ther.10, 1885–1895 (2016).
  • Shi M , DuL, LiuD et al. Glucocorticoid regulation of a novel HPV/E6/p53/miR‐145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol228(2), 148–157 (2012).
  • Ke G , LiangL, YangJM et al. miR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene32(25), 3019–3027 (2013).
  • Yao T , LuR, ZhangJ et al. Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating STAT3 signaling via miR-21. J. Cell. Physiol.234(6), 9605–9615 (2019).
  • Wu Y , HuangJ, XuH, GongZ. Over-expression of miR-15a-3p enhances the radiosensitivity of cervical cancer by targeting tumor protein D52. Biomed. Pharmacother.105, 1325–1334 (2018).
  • Xia M , DuanL-J, LuB-N, PangY-Z, PangZ-R. lncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin. Med. J.134(17), 2091–2101 (2021).
  • Bhaskaran V , YaoY, BeiF, PeruzziP. Engineering, delivery, and biological validation of artificial microRNA clusters for gene therapy applications. Nat. Protoc.14(12), 3538–3553 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.