61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

hsa_circ_0087100/hsa-miR-6743-5p affects Th1 cell differentiation by regulating STAT1 in diabetic retinopathy

, , , , , , & ORCID Icon show all
Pages 427-444 | Received 15 Oct 2023, Accepted 06 Feb 2024, Published online: 27 Feb 2024

References

  • Tan TE , WongTY. Diabetic retinopathy: looking forward to 2030. Front. Endocrinol. (Lausanne)13, 1077669 (2022).
  • Teo ZL , ThamYC, YuM et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology128(11), 1580–1591 (2021).
  • Cheung N , MitchellP, WongTY. Diabetic retinopathy. Lancet376(9735), 124–136 (2010).
  • Gucciardo E , LoukovaaraS, SalvenP, LehtiK. Lymphatic vascular structures: a new aspect in proliferative diabetic retinopathy. Int. J. Mol. Sci.19(12), 4034 (2018).
  • Stitt AW , CurtisTM, ChenM et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res.51, 156–186 (2016).
  • Demircioğlu D , CukurogluE, KindermansM et al. A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell178(6), 1465–1477.e1417 (2019).
  • Sun H , ChengY, YanZ, LiuX, ZhangJ. Mining the proliferative diabetic retinopathy-associated genes and pathways by integrated bioinformatic analysis. Int. Ophthalmol.40(2), 269–279 (2020).
  • Youngblood H , RobinsonR, SharmaA, SharmaS. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int. J. Mol. Sci.20(19), 4755 (2019).
  • Carr HL , TurnerJD, MajorT, Scheel-ToellnerD, FilerA. New developments in transcriptomic analysis of synovial tissue. Front. Med. (Lausanne)7, 21 (2020).
  • Jiang Q , LiuC, LiCP et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J. Clin. Invest.130(7), 3833–3847 (2020).
  • Wang T , LiC, ShiM, ZhouS, ChenJ, WangF. Circular RNA circZNF532 facilitates angiogenesis and inflammation in diabetic retinopathy via regulating miR-1243/CARM1 axis. Diabetol. Metab. Syndr.14(1), 14 (2022).
  • Gu C , DragaD, ZhouC et al. miR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway. Invest. Ophthalmol. Vis. Sci.60(13), 4215–4223 (2019).
  • Mesquida M , DrawnelF, FauserS. The role of inflammation in diabetic eye disease. Semin. Immunopathol.41(4), 427–445 (2019).
  • Forrester JV , KuffovaL, DelibegovicM. The role of inflammation in diabetic retinopathy. Front. Immunol.11, 583687 (2020).
  • Zeng Y , CaoD, YuH et al. Comprehensive analysis of vitreous humor chemokines in type 2 diabetic patients with and without diabetic retinopathy. Acta Diabetol.56(7), 797–805 (2019).
  • Taylor AW . Ocular immune privilege. Eye (Lond.)23(10), 1885–1889 (2009).
  • Rudraraju M , NarayananSP, SomanathPR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol. Res.161, 105115 (2020).
  • Binet F , CagnoneG, Crespo-GarciaS et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science369(6506), eaay5356 (2020).
  • Urbančič M , KlobovesPrevodnik V, PetrovičD, GlobočnikPetrovič M. A flow cytometric analysis of vitreous inflammatory cells in patients with proliferative diabetic retinopathy. Biomed. Res. Int.2013, 251528 (2013).
  • Kase S , SaitoW, OhnoS, IshidaS. Proliferative diabetic retinopathy with lymphocyte-rich epiretinal membrane associated with poor visual prognosis. Invest. Ophthalmol. Vis. Sci.50(12), 5909–5912 (2009).
  • Huang J , ZhouQ. CD8+T cell-related gene biomarkers in macular edema of diabetic retinopathy. Front. Endocrinol. (Lausanne)13, 907396 (2022).
  • Huang J , ZhouQ. Gene biomarkers related to Th17 cells in macular edema of diabetic retinopathy: cutting-edge comprehensive bioinformatics analysis and in vivo validation. Front. Immunol.13, 858972 (2022).
  • Zhang SJ , ChenX, LiCP et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest. Ophthalmol. Vis. Sci.58(14), 6500–6509 (2017).
  • Yang Y , YueW, WangN et al. Altered expressions of transfer RNA-derived small RNAs and microRNAs in the vitreous humor of proliferative diabetic retinopathy. Front. Endocrinol. (Lausanne)13, 913370 (2022).
  • Ishikawa K , YoshidaS, KobayashiY et al. Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.56(2), 932–946 (2015).
  • Ritchie ME , PhipsonB, WuD et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43(7), e47 (2015).
  • Love MI , HuberW, AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
  • Vivian J , RaoAA, NothaftFA et al. Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol.35(4), 314–316 (2017).
  • Dudekula DB , PandaAC, GrammatikakisI, DeS, AbdelmohsenK, GorospeM. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol.13(1), 34–42 (2016).
  • Liu M , WangQ, ShenJ, YangBB, DingX. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol.16(7), 899–905 (2019).
  • Agarwal V , BellGW, NamJW, BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. Elife4 (2015).
  • Sticht C , DeLa Torre C, ParveenA, GretzN. miRWalk: an online resource for prediction of microRNA binding sites. PLOS ONE13(10), e0206239 (2018).
  • Newman AM , LiuCL, GreenMR et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods12(5), 453–457 (2015).
  • Hänzelmann S , CasteloR, GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformat.14, 7 (2013).
  • Bhattacharya S , AndorfS, GomesL et al. ImmPort: disseminating data to the public for the future of immunology. Immunol. Res.58(2–3), 234–239 (2014).
  • Langfelder P , HorvathS. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformat.9, 559 (2008).
  • Zhang B , HorvathS. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.4, Article17 (2005).
  • Subramanian A , TamayoP, MoothaVK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102(43), 15545–15550 (2005).
  • Szklarczyk D , GableAL, LyonD et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47(D1), D607–d613 (2019).
  • Shannon P , MarkielA, OzierO et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Conway JR , LexA, GehlenborgN. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics33(18), 2938–2940 (2017).
  • Kim YH , KimYS, KangSS, ChoGJ, ChoiWS. Resveratrol inhibits neuronal apoptosis and elevated Ca2+/calmodulin-dependent protein kinase II activity in diabetic mouse retina. Diabetes59(7), 1825–1835 (2010).
  • Swindle EJ , BrownJM, RådingerM, DeleoFR, MetcalfeDD. Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology146(3), 470–485 (2015).
  • Shi M , LinTH, AppellKC, BergLJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity28(6), 763–773 (2008).
  • Ramana CV , GilMP, SchreiberRD, StarkGR. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol.23(2), 96–101 (2002).
  • Du SW , PalczewskiK. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci.45(1), 78–90 (2022).
  • Rohm TV , MeierDT, OlefskyJM, DonathMY. Inflammation in obesity, diabetes, and related disorders. Immunity55(1), 31–55 (2022).
  • Chen M , LuoC, ZhaoJ, DevarajanG, XuH. Immune regulation in the aging retina. Prog. Retin. Eye Res.69, 159–172 (2019).
  • Caspi R . Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunol. Res.42(1–3), 41–50 (2008).
  • Golubovskaya V , WuL. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel)8(3), 36 (2016).
  • Cao YL , ZhangFQ, HaoFQ. Th1/Th2 cytokine expression in diabetic retinopathy. Genet. Mol. Res.15(3), (2016).
  • Zhang Q , FangW, MaL, WangZD, YangYM, LuYQ. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: A cohort study. Medicine (Baltimore)97(15), e0415 (2018).
  • Dumitriu IE . The life (and death) of CD4+ CD28(null) T cells in inflammatory diseases. Immunology146(2), 185–193 (2015).
  • Sampani E , DaikidouD-V, LiouliosG et al. CD28null and regulatory T cells are substantially disrupted in patients with end-stage renal disease due to diabetes mellitus. Int. J. Mol. Sci.22(6), 2975 (2021).
  • Giubilato S , LiuzzoG, BrugalettaS et al. Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur. Heart J32(10), 1214–1226 (2011).
  • Kovalcsik E , AntunesRF, BaruahP, KaskiJC, DumitriuIE. Proteasome-mediated reduction in proapoptotic molecule Bim renders CD4(+)CD28null T cells resistant to apoptosis in acute coronary syndrome. Circulation131(8), 709–720 (2015).
  • Li BY , TanW, ZouJL et al. Role of interferons in diabetic retinopathy. World J. Diabetes12(7), 939–953 (2021).
  • De Benedetti F , PrencipeG, BracagliaC, MarascoE, GromAA. Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat. Rev. Rheumatol.17(11), 678–691 (2021).
  • Shin ES , HuangQ, GurelZ et al. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Disease5(1), e986 (2014).
  • Kaviarasan K , JithuM, ArifMulla M et al. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. Metabolism64(9), 958–966 (2015).
  • Demaio A , MehrotraS, SambamurtiK, HusainS. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J. Neuroinflamm.19(1), 251 (2022).
  • Kohanbash G , OkadaH. MicroRNAs and STAT interplay. Semin. Cancer Biol.22(1), 70–75 (2012).
  • Kutty RK , NagineniCN, SamuelW, VijayasarathyC, HooksJJ, RedmondTM. Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem. Biophys. Res. Commun.402(2), 390–395 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.