66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Histone Methyltransferase SMYD1 is Induced by Thermogenic Stimuli in Adipose Tissue

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 359-374 | Received 30 Oct 2023, Accepted 30 Jan 2024, Published online: 05 Mar 2024

References

  • Cinti S . The role of brown adipose tissue in human obesity. Nutr. Metab. Cardiovasc. Dis.16(8), 569–574 (2006).
  • Macchia PE , NettoreIC, FranchiniF, Santana-VieraL, UngaroP. Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics13, 235–251 (2021).
  • Bartelt A , BrunsOT, ReimerRet al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med.17(2), 200–205 (2011).
  • Giralt M , VillarroyaF. White, brown, beige/brite: different adipose cells for different functions?Endocrinology154, 2992–3000 (2013).
  • Saely CH , GeigerK, DrexelH. Brown versus white adipose tissue: a mini-review. Gerontology58, 15–23 (2012).
  • Arner P , BernardS, SalehpourMet al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature478(7367), 110–113 (2011).
  • Srivastava A , ShankarK, BegMet al. Chronic hyperinsulinemia induced miR-27b is linked to adipocyte insulin resistance by targeting insulin receptor. J. Mol. Med.96(3–4), 315–331 (2018).
  • Shabalina GI , PetrovicN, DeJong JMA, KalinovichAV, CannonB, NedergaardJ. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep.5(5), 1196–1203 (2013).
  • Granneman JG , LiP, ZhuZ, LuY. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab.289(4), E608–616 (2005).
  • Inagaki T , SakaiJ, KajimuraS. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol.18(8), 527 (2017).
  • Kalinovich AV , DeJong JM, CannonB, NedergaardJ. UCP1 in adipose tissues: two steps to full browning. Biochimie134, 127–137 (2017).
  • Yau WW , SinghBK, LesmanaRet al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy15(1), 131–150 (2019).
  • Pérez-Martí A , Garcia-GuaschM, Tresserra-RimbauAet al. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21). Mol. Nutr. Food Res.61(8), 1600725 (2017).
  • Finlin BS , MemetiminH, ConfidesALet al. Human adipose beiging in response to cold and mirabegron. JCI Insight3(15), e121510 (2018).
  • Otero-Díaz B , Rodríguez-FloresM, Sánchez-MuñozVet al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front. Physiol.9, 1781 (2018).
  • Barbera MJ , SchlüterA, PedrazaN, IglesiasR, VillarroyaF, GiraltM. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J. Biol. Chem.276(2), 1486–1493 (2001).
  • Schulz TJ , HuangTL, TranTTet al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA108(1), 143–148 (2011).
  • Villarroya F , PeyrouM, GiraltM. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie134, 86–92 (2017).
  • Cypess AM , WhiteAP, VernochetCet al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med.19(5), 635–639 (2013).
  • Lidell ME , BetzMJ, EnerbäckS. Two types of brown adipose tissue in humans. Adipocyte3(1), 63–66 (2014).
  • Mazzio EA , SolimanKFA. Epigenetics and nutritional environmental signals. Integr. Comp. Biol.54, 21–30 (2014).
  • Zhang G , SunQ, LiuC. Influencing factors of thermogenic adipose tissue activity. Front. Physiol.7, 29 (2016).
  • Ohno H , ShinodaK, OhyamaK, SharpLZ, KajimuraS. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature504, 163–167 (2013).
  • Dillon SC , ZhangX, TrievelRC, ChengX. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol.6, 227 (2005).
  • Tracy C , WarrenJS, SzulikMet al. The Smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr. Opin. Physiol.1, 140–152 (2018).
  • Sims RJ , WeiheEK, ZhuL, O’MalleyS, HarrissJV, GottliebPD. m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J. Biol. Chem.277, 26524–26529 (2002).
  • Park CY , PierceSA, Von DrehleMet al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc. Natl Acad. Sci. USA107, 20750–20755 (2010).
  • Gottlieb PD , PierceSA, SimsRJet al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet.31(1), 25–32 (2002).
  • Warren J , TracyC, MillerMet al. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc. Natl Acad. Sci. USA115(33), E7871–E7880 (2018).
  • Vastolo V , NettoreIC, CiccarelliMet al. High-fat diet unveils an enhancer element at the Ped/Pea-15 gene responsible for epigenetic memory in skeletal muscle. Metabolism87, 70–79 (2018).
  • Sagliocchi S , MuroloM, CicatielloAGet al. Repositioning of cefuroxime as novel selective inhibitor of the thyroid hormone activating enzyme type 2 deiodinase. Pharmacol. Res.189, 106685 (2023).
  • Nettore IC , RoccaC, MancinoGet al. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J. Nutr. Biochem.69, 151–162 (2019).
  • Asano H , KanamoriY, HigurashiSet al. Induction of beige-like adipocytes in 3T3-L1 cells. J. Vet. Med. Sci.76(1), 57–64 (2014).
  • Perfetti A , OrienteF, IovinoSet al. Phorbol esters induce intracellular accumulation of the anti-apoptotic protein PED/PEA-15 by preventing ubiquitinylation and proteasomal degradation. J. Biol. Chem.282(12), 8648–8657 (2007).
  • Niu L , XuY-C, XieH-Y, DaiZ, TangH-Q. Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. Acta Pharmacol. Sin.29(11), 1342–1349 (2008).
  • Cicatiello AG , SagliocchiS, NappiAet al. Thyroid hormone regulates glutamine metabolism and anaplerotic fluxes by inducing mitochondrial glutamate aminotransferase GPT2. Cell Rep.38(8), 110409 (2022).
  • Nettore IC , DeNisco E, DesiderioSet al. Selenium supplementation modulates apoptotic processes in thyroid follicular cells. Biofactors43(3), 415–423 (2017).
  • Nappi A , MiroC, PezoneAet al. Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage. Nat. Commun.14(1), 1244 (2023).
  • Nappi A , MuroloM, CicatielloAGet al. Thyroid hormone receptor isoforms alpha and beta play convergent roles in muscle physiology and metabolic regulation. Metabolites12(5), (2022).
  • Morera L , LübbertM, JungM. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics8, 57 (2016).
  • Sambeat A , GulyaevaO, DempersmierJ, SulHS. Epigenetic regulation of the thermogenic adipose program. Trends Endocrinol. Metab.28(1), 19–31 (2017).
  • Kajimura S , SealeP, KubotaKet al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature460(7259), 1154–1158 (2009).
  • Seale P , KajimuraS, YangWet al. Transcriptional control of brown fat determination by PRDM16. Cell Metab.6(1), 38–54 (2007).
  • Seale P , BjorkB, YangWet al. PRDM16 controls a brown fat/skeletal muscle switch. Nature454, 961–967 (2008).
  • Seale P , ConroeHM, EstallJet al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest.121(1), 96–105 (2011).
  • Rasmussen TL , TuckerH. Loss of SMYD1 results in perinatal lethality via selective defects within myotonic muscle descendants. Diseases7(1), 1 (2018).
  • Landsberg L . Feast or famine: the sympathetic nervous system response to nutrient intake. Cell. Mol. Neurobiol.26, 497–508 (2006).
  • Garcia-Ruiz E , ReynesB, Diaz-RuaR, CeresiE, OliverP, PalouA. The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. Int. J. Obes.39(11), 1619–1629 (2015).
  • Ahfeldt T , SchinzelRT, LeeY-Ket al. Programming human pluripotent stem cells into white and brown adipocytes. Nat. Cell Biol.14(2), 209–219 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.