28
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On Efficiency of Parallel Solvers for the Blood Flow through Aortic Valve

, , ORCID Icon, , , ORCID Icon & show all
Pages 601-616 | Received 07 Jan 2017, Published online: 21 Sep 2017

References

  • A. AlOnazi. Design and optimization of OpenFOAM-based CFD applications for modern hybrid and heterogeneous HPC platforms. Master’s thesis, University College Dublin, Dublin, Ireland, 2013.
  • ANSYS Fluent. Scalability of ANSYS 16 applications and hardware selection - white paper. Technical report, Resource library, 2016.
  • D. Bluestein and S. Einav. Techniques in the stability analysis of pulsatile flow through heart valves. In Cornelius Leondes(Ed.), Biomechanical Systems, Techniques and Applications, Volume II: Cardiovascular Techniques. CRC Press, 2000. https://doi.org/10.1201/9781420049534.ch-04.
  • A.M. Bruaset and A. Tveito(Eds.). Numerical solution of partial differential equations on parallel computers. Lecture notes in computational science and engineering. Springer, Berlin, 2006.
  • Z.J. Chen and A.J. Przekwas. A coupled pressure-based computational method for incompressible/compressible flows. Journal of Computational Physics, 229(24):9150–9165, 2010. https://doi.org/10.1016/j.jcp.2010.08.029.
  • R. Čiegis, A. Jakušev and V. Starikovičius. Parallel tool for solution of multiphase flow problems. In R. Wyrzykowski, J. Dongarra, N. Meyer and J. Waśniewski(Eds.), Parallel Processing and Applied Mathematics: 6th International Conference, PPAM 2005, Poznań, Poland, September 11-14, 2005, Revised Selected Papers, pp. 312–319. Springer Berlin Heidelberg, 2006. https://doi.org/10.1007/11752578_38.
  • R. Čiegis and V. Starikovičius. Realistic performance prediction tool for the parallel block LU factorization algorithm. Informatica, 14(2):167–180, 2003.
  • M. Darwish, I. Sraj and F. Moukalled. A coupled finite volume solver for the solution of incompressible flows on unstructured grids. Journal of Computational Physics, 228(1):180–201, 2009. https://doi.org/10.1016/j.jcp.2008.08.027.
  • A. Duran, M.S. Celebi, S. Piskin and M. Tuncel. Scalability of OpenFOAM for bio-medical flow simulations. The Journal of Supercomputing, 71(3):938–951, 2015. https://doi.org/10.1007/s11227-014-1344-1.
  • C. Engwer and J. Fahlke. Scalable hybrid parallelization strategies for the DUNE grid interface. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile and M. Picasso(Eds.), Numerical Mathematics and Advanced Applications-ENUMATH 2013, pp. 583–590. Springer, 2015. https://doi.org/10.1007/978-3-319-10705-9_57.
  • M. Esmaily Moghadam, Y. Bazilevs, T.Y. Hsia, I.E. Vignon-Clementel and A.L. Marsden. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computational Mechanics, 48(3):277–291, 2011. https://doi.org/10.1007/s00466-011-0599-0.
  • L. Ge, H.L. Leo, F. Sotiropoulos and A.P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. Journal of Biomechanical Engineering, 127(5):782–797, 2005. https://doi.org/10.1115/1.1993665.
  • F. Greifzu, C. Kratzsch, T. Forgber, F. Lindner and R. Schwarze. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS Fluent. Engineering Applications of Computational Fluid Mechanics, 10(1):30–43, 2016. https://doi.org/10.1080/19942060.2015.1104266.
  • R. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1):40–65, 1986. https://doi.org/10.1016/0021-9991(86)90099-9.
  • M. Jahandardoost, G. Fradet and H. Mohammadi. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(3):232–244, 2015. https://doi.org/10.1177/0954411915576944.
  • A. Kačeniauskas. Development of efficient interface sharpening procedure for viscous incompressible flows. Informatica, 19(4):487–504, 2008.
  • A. Kačeniauskas, R. Pacevič, A. Bugajev and T. Katkevičius. Efficient visualization by using ParaView software on BalticGrid. Information Technology and Control, 39(2):108–115, 2010.
  • A. Kačeniauskas, R. Pacevič, V. Starikovičius, A. Maknickas, M. Staškūnienė and G. Davidavičius. Development of cloud services for patient-specific simulations of blood flows through aortic valves. Advances in Engineering Software, 103:57–64, 2017. https://doi.org/10.1016/j.advengsoft.2016.01.013.
  • G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998. https://doi.org/10.1137/S1064827595287997.
  • S. Kulp, Z. Qian, M. Vannan, S. Rinehart and D. Metaxas. Patientspecific aortic valve blood flow simulations. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 939–942, 2014. https://doi.org/10.1109/isbi.2014.6868026.
  • B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269–289, 1974. https://doi.org/10.1016/0045-7825(74)90029-2.
  • T.B. Le and F. Sotiropoulos. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. Journal of Computational Physics, 244:41–62, 2013. https://doi.org/10.1016/j.jcp.2012.08.036.
  • G. Marom. Numerical methods for fluid–structure interaction models of aortic valves. Archives of Computational Methods in Engineering, 22(4):595–620, 2015. https://doi.org/10.1007/s11831-014-9133-9.
  • R. Mittal, J.H. Seo, V. Vedula, Y.J. Choi, H. Liu, H.H. Huang, S. Jain, L. Younes, T. Abraham and R.T. George. Computational modeling of cardiac hemodynamics: Current status and future outlook. Journal of Computational Physics, 305:1065–1082, 2016. https://doi.org/10.1016/j.jcp.2015.11.022.
  • MH. Moosavi, N. Fatouraee, H. Katoozian, A. Pashaei, O. Camara and A.F. Frangi. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics. Computer Methods in Biomechanics and Biomedical Engineering, 17(7):740–749, 2014. https://doi.org/10.1080/10255842.2012.715638.
  • E. Müller and R. Scheichl. Massively parallel solvers for elliptic PDEs in numerical weather- and climate prediction. Quarterly Journal of the Royal Meteorological Society, 140(685):2608–2624, 2014. https://doi.org/10.1002/qj.2327.
  • E. Müller, R. Scheichl and E. Vainikko. Petascale solvers for anisotropic PDEs in atmospheric modelling on GPU clusters. Parallel Computing, 50:53–69, 2015. https://doi.org/10.1016/j.parco.2015.10.007.
  • VT. Nguyen, Y.H. Kuan, PY. Chen, L. Ge, F. Sotiropoulos, A.P. Yoganathan and H.L. Leo. Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovascular Engineering and Technology, 3(1):88–100, 2012. https://doi.org/10.1007/s13239-011-0077-z.
  • M. Nolden, S. Zelzer, A. Seitel, D. Wald, M. Müller, A.M. Franz, D. Maleike, M. Fangerau, M. Baumhauer, L. Maier-Hein, K.H. Maier-Hein, H.P. Meinzer and I. Wolf. The Medical Imaging Interaction Toolkit: challenges and advances. International Journal of Computer Assisted Radiology and Surgery, 8(4):607–620, 2013. https://doi.org/10.1007/s11548-013-0840-8.
  • S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10):1787–1806, 1972. https://doi.org/10.1016/0017-9310(72)90054-3.
  • S. Posey, B. Loewe and P. Calleja. Cluster scalability of ANSYS Fluent 12 for a large aerodynamics case on the Darwin supercomputer. In 4th European Automotive Simulation Conference, pp. 1–6, 2009. Munich, Germany, 6-7 July
  • A.M. Pouch, H. Wang, M. Takabe, B.M. Jackson, C.M. Sehgal, J.H. Gorman, R.C. Gorman and P.A. Yushkevich. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images. In K. Mori, I. Sakuma, Y. Sato, C. Barillot and N. Navab(Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part I, pp. 485–492. Springer Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-40811-3_61.
  • C.N. Richardson and G.N. Wells. Expressive and scalable finite element simulation beyond 1000 cores. Technical report, University of Cambridge, 2013.
  • D. Šešok, R. Belevičius, A. Kačeniauskas and J. Mockus. Application of GRID computing for optimization of grillages. Mechanika, 82(2):63–69, 2010.
  • E. Sirois, Q. Wang and W. Sun. Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovascular Engineering and Technology, 2(3):186–195, 2011. https://doi.org/10.1007/s13239-011-0037-7.
  • V. Starikovičius, R. Čiegis and A. Bugajev. On efficiency analysis of the OpenFOAM-based parallel solver for simulation of heat transfer in and around the electrical power cables. Informatica, 27(1):161–178, 2016. https://doi.org/10.15388/Informatica.2016.80.
  • V. Starikovičius, R. Čiegis, O. Iliev and Z. Lakdawala. A parallel solver for the 3D simulation of flows through oil filters. In Parallel Scientific Computing and Optimization: Advances and Applications, pp. 181–191. Springer New York, 2009.
  • E. Stupak, R. Kačianauskas, A. Kačeniauskas, V. Starikovičius, A. Maknickas, R. Pacevič, M. Staškūnienė, G. Davidavičius and A. Aidietis. The geometric model-based patient-specific simulations of turbulent aortic valve flows. Archives of Mechanics, 2017. Submitted.
  • L. Tumonis, R. Kačianiauskas, A. Kačeniauskas and M. Schneider. The transient behavior of rails used in electromagnetic railguns: numerical investigations at constant loading velocities. Journal of vibroengineering, 9(3):15–18, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.