561
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Discovery of a Novel IκB Kinase β Inhibitor Based on Pharmacophore Modeling, Virtual Screening and Biological Evaluation

ORCID Icon & ORCID Icon
Pages 531-544 | Received 05 Sep 2023, Accepted 10 Nov 2023, Published online: 22 Feb 2024

References

  • Liu T , ZhangL, JooD, SunS-C. NF-κB signaling in inflammation. Signal Transduct. Target Ther.2(1), 17023 (2017).
  • Yu H , LinL, ZhangZ, ZhangH, HuH. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct. Target Ther.5(1), 209 (2020).
  • Hayden MS , GhoshS. Shared principles in NF-κB signaling. Cell132(3), 344–362 (2008).
  • Sen R , BaltimoreDJC. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell46(5), 705–716 (1986).
  • Baldwin ASJIR . Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunological Reviews246(1), 327–345 (2012).
  • Taniguchi K , KarinM. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol.18(5), 309–324 (2018).
  • Rasmi RR , SakthivelKM, GuruvayoorappanC. NF-κB inhibitors in treatment and prevention of lung cancer. Biomed. Pharmacother.130, 110569 (2020).
  • Brücher BLDM , LangF, JamallIS. NF-κB signaling and crosstalk during carcinogenesis. 4open.2, 13 (2019).
  • Martin M , HartleyA-V, JinJ, SunM, LuT. Adenosine Triphosphate in Health and Disease. In: Phosphorylation of NF-κB in Cancer. Adenosine Triphosphate in Health and Disease.IntechOpen, Rijeka, Croatia (2019).
  • Gasparini C , CeleghiniC, MonastaL, ZauliG. NF-κB pathways in hematological malignancies. Cell. Mol. Life Sci.71(11), 2083–2102 (2014).
  • Xia Y , PadreRC, DeMendoza TH, BotteroV, TergaonkarVB, VermaIM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc. Natl Acad. Sci. USA106(8), 2629–2634 (2009).
  • Ishak Gabra MB , YangY, LowmanXH, ReidMA, TranTQ, KongM. IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation. Oncogenesis7(11), 93 (2018).
  • Hu MC , LeeDF, XiaWet al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117(2), 225–237 (2004).
  • Dondelinger Y , Jouan-LanhouetS, DivertTet al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell60(1), 63–76 (2015).
  • Blanchett S , Boal-CarvalhoI, LayzellS, SeddonB. NF-κB and extrinsic cell death pathways – entwined do-or-die decisions for T cells. Trends Immunol.42(1), 76–88 (2021).
  • Liu S , MisquittaYR, OllandAet al. Crystal structure of a human IκB kinase β asymmetric dimer. J. Biol. Chem.288(31), 22758–22767 (2013).
  • Xu G , LoY-C, LiQet al. Crystal structure of inhibitor of κB kinase β. Nature472(7343), 325–330 (2011).
  • Polley S , HuangD-B, HauensteinAVet al. A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. PLOS Biol.11(6), e1001581 (2013).
  • Yu Z , GaoJ, ZhangXet al. Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth. Signal Transduct. Target Ther.7(1), 71 (2022).
  • Hideshima T , NeriP, TassonePet al. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin. Cancer Res.12(19), 5887–5894 (2006).
  • Hotchkiss SJ , MuleroMC, ChanGJet al. Discovery of an IKK2 site that allosterically controls its activation. doi: 10.1101/2021.01.27.428502 (2021) ( Epub ahead of print).
  • Burke JR , PattoliMA, GregorKRet al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J. Biol. Chem.278(3), 1450–1456 (2003).
  • Lin S-K . Pharmacophore Perception, Development and Use in Drug Design. Edited by Osman F. Güner. Molecules5(7), 987–989 (2000).
  • Baxter A , BroughS, CooperAet al. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Bioorg. Med. Chem. Lett.14(11), 2817–2822 (2004).
  • Belema M , BunkerA, NguyenVNet al. Synthesis and structure–activity relationship of imidazo(1,2-a)thieno(3,2-e)pyrazines as IKK-β inhibitors. Bioorg. Med. Chem. Lett.17(15), 4284–4289 (2007).
  • Bonafoux D , BonarS, ChristineLet al. Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides. Bioorg. Med. Chem. Lett.15(11), 2870–2875 (2005).
  • Christopher J , AvitabileB, BamboroughPet al. The discovery of 2-amino-3,5-diarylbenzamide inhibitors of IKK-β and IKK-β kinases. Bioorg. Med. Chem. Lett.17, 3972–3977 (2007).
  • Christopher JA , BamboroughP, AlderCet al. Discovery of 6-aryl-7-alkoxyisoquinoline Inhibitors of IκB kinase-β (IKK-β). J. Med. Chem.52(9), 3098–3102 (2009).
  • Clark K , PeggieM, PlaterLet al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J.434(1), 93–104 (2011).
  • Kim S , JungJK, LeeHSet al. Discovery of piperidinyl aminopyrimidine derivatives as IKK-2 inhibitors. Bioorg. Med. Chem. Lett.21(10), 3002–3006 (2011).
  • Liddle J , BamboroughP, BarkerMDet al. 4-Phenyl-7-azaindoles as potent, selective and bioavailable IKK2 inhibitors demonstrating good in vivo efficacy. Bioorg. Med. Chem. Lett.22(16), 5222–5226 (2012).
  • Lorenzo P , OrtizMA, AlvarezR, PiedrafitaFJ, DeLera AR. Adamantyl arotinoids that inhibit IκB kinase α and IκB kinase β. ChemMedChem8(7), 1184–1198 (2013).
  • Mbalaviele G , SommersCD, BonarSLet al. A novel, highly selective, tight binding IκB kinase-2 (IKK-2) inhibitor: a tool to correlate IKK-2 activity to the fate and functions of the components of the nuclear factor-κB pathway in arthritis-relevant cells and animal models. Journal of Pharmacology and Experimental Therapeutics. 329(1), 14–25 (2009).
  • Park H , ShinY, ChoeH, HongS. Computational design and discovery of nanomolar inhibitors of IκB kinase β. J. Am. Chem. Soc.137(1), 337–348 (2015).
  • Pitts W , KempsonJ. Advances in the discovery of I κB kinase inhibitors. Annu. Rep. Med. Chem.3, 155–170 (2008).
  • Rajendrasozhan S , HwangJW, YaoH, KishoreN, RahmanI. Anti-inflammatory effect of a selective IkappaB kinase-beta inhibitor in rat lung in response to LPS and cigarette smoke. Pulm. Pharmacol. Ther.23(3), 172–181 (2010).
  • Xie HZ , LiuLY, RenJXet al. Pharmacophore modeling and hybrid virtual screening for the discovery of novel IκB kinase 2 (IKK2) inhibitors. J. Biomol. Struct. Dyn.29(1), 165–179 (2011).
  • Murata T , ShimadaM, SakakibaraSet al. Synthesis and structure–activity relationships of novel IKK-beta inhibitors. Part 3: orally active anti-inflammatory agents. Bioorg. Med. Chem. Lett.14(15), 4019–4022 (2004).
  • Sala E , GuaschL, IwaszkiewiczJet al. Identification of human IKK-2 inhibitors of natural origin (part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays. PLOS ONE6(2), e16903 (2011).
  • Shrestha S , BhattaraiBR, ChoH, ChoiJ-K, ChoH. PTP1B inhibitor ertiprotafib is also a potent inhibitor of IκB kinase β (IKK-β). Bioorg. Med. Chem. Lett.17(10), 2728–2730 (2007).
  • John S , ThangapandianS, SakkiahS, LeeKW. Potent bace-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking studies. BMC Bioinformatics12(Suppl 1), S28 (2011).
  • Sakkiah S , BaekA, LeeKW. Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors. Journal of Molecular Structure1011, 66–75 (2012).
  • Niu M-M , QinJ-Y, TianC-Pet al. Tubulin inhibitors: pharmacophore modeling, virtual screening and molecular docking. Acta Pharm. Sin.35(7), 967–979 (2014).
  • Van De Waterbeemd H , GiffordE. ADMET in silico modelling: towards prediction paradise?Nat. Rev. Drug Discov.2(3), 192–204 (2003).
  • Wu G , RobertsonDH, BrooksCL3rd, ViethM. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comp. Chem.24(13), 1549–1562 (2003).
  • Catheline SE , BellRD, OluochLSet al. IKKβ–NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci. Signal.14(701), eabf3535 (2021).
  • Schopf L , SavinainenA, AndersonKet al. IKKβ inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. Arthritis Rheum.54(10), 3163–3173 (2006).
  • Hong R , SurB, YeomMet al. Anti-inflammatory and anti-arthritic effects of the ethanolic extract of Aralia continentalis Kitag. in IL-1β-stimulated human fibroblast-like synoviocytes and rodent models of polyarthritis and nociception. Phytomedicine38, 45–56 (2018).