32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, Synthesis and Evaluation of Aminothiazole Derivatives as Potential Anti-Alzheimer’s Candidates

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 513-529 | Received 08 Oct 2023, Accepted 26 Jan 2024, Published online: 20 Feb 2024

References

  • Fang J , LiY, LiuRet al. Discovery of multitarget-directed ligands against Alzheimer’s disease through systematic prediction of chemical–protein interactions. J. Chem. Inf. Model.55(1), 149–164 (2015).
  • Cao J , HouJ, PingJ, CaiD. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener.13(1), 64 (2018).
  • Sun BL , LiWW, ZhuCet al. Clinical research on Alzheimer’s disease: progress and perspectives. Neurosci. Bull.34, 1111–1118 (2018).
  • Guo YY , YangLZ, RuJXet al. An ‘OFF–ON’ fluorescent chemosensor for highly selective and sensitive detection of Al (III) in aqueous solution. Dyes Pigm.99(3), 693–698 (2013).
  • Zhang P , XuS, ZhuZ, XuJ. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur. J. Med. Chem.176, 228–247 (2019).
  • de Freitas Silva M , DiasKS, GontijoVS, OrtizCJ, ViegasCJr. Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: an update. Curr. Med. Chem.25(29), 3491–3525 (2018).
  • Huang LK , ChaoSP, HuCJ. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci.27(1), 18 (2020).
  • Marucci G , BuccioniM, DalBen D, LambertucciC, VolpiniR, AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology190, 108352 (2021).
  • Campbell A . The potential role of aluminium in Alzheimer’s disease. Nephrol. Dial. Transplant.17(2), 17–20 (2002).
  • Bondy SC , KirsteinS. The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum. Mol. Chem. Neuropathol.27, 185–194 (1996).
  • Vecchio I , SorrentinoL, PaolettiA, MarraR, ArbitrioM. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J. Cent. Nerv. Syst. Dis.13, 11795735211029113 (2021).
  • Shi L , MaoWJ, YangY, ZhuHL. Synthesis, characterization, and biological activity of a Schiff-base Zn (II) complex. J. Coord. Chem.62(21), 3471–3477 (2009).
  • Zhao J , ZhaoB, LiuJ, XuW, WangZ. Spectroscopy study on the photochromism of Schiff bases N,N’-bis (salicylidene)-1,2-diaminoethane and N,N’-bis (salicylidene)-1,6-hexanediamine. Spectrochim. Acta A Mol. Biomol. Spectrosc.57(1), 149–154 (2001).
  • Shanty AA , PhilipJE, SnehaEJ, KurupMR, BalachandranS, MohananPV. Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety. Bioorg. Chem.70, 67–73 (2017).
  • Desai SB , DesaiPB, DesaiKR. Synthesis of some Schiff bases, thiazolidinones and azetidinones derived from 2,6-diaminobenzo [1,2-d:4,5-d’]bisthiazole and their anticancer activities. Heterocycl. Commun.7(1), 83–90 (2001).
  • Pandeya SN , SriramD, NathG, DeClercqE. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4′-chlorophenyl)thiazol-2-yl]thiosemicarbazide. Eur. J. Pharm. Sci.9(1), 25–31 (1999).
  • Jadhao M , DasC, RawatAet al. Development of multifunctional heterocyclic Schiff base as a potential metal chelator: a comprehensive spectroscopic approach towards drug discovery. J. Biol. Inorg. Chem.22, 47–59 (2017).
  • Abd Razik MB , OsmanH, EzzatOMet al. Efficient synthesis and discovery of Schiff bases as potent cholinesterase inhibitors. Med. Chem.12(6), 527–536 (2016).
  • Kavitha CV , SwamySN, MantelinguKet al. Synthesis of new bioactive venlafaxine analogs: novel thiazolidin-4-ones as antimicrobials. Bioorg. Med. Chem.14(7), 2290–2299 (2006).
  • Omar K , GeronikakiA, ZoumpoulakisPet al. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg. Med. Chem.18(1), 426–432 (2010).
  • Isloor AM , SunilD, ShettyP, MalladiS, PaiKS, MaliyakklN. Synthesis, characterization, anticancer, and antioxidant activity of some new thiazolidin-4-ones in MCF-7 cells. Med. Chem. Res.22, 758–767 (2013).
  • Ottanà R , MaccariR, CiurleoRet al. 5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorg. Med. Chem.17(5), 1928–1937 (2009).
  • Nofal ZM , SolimanEA, AbdEl-Karim SSet al. Synthesis of some new benzimidazole-thiazole derivatives as anticancer agents. J. Heterocycl. Chem.51(6), 1797–1806 (2014).
  • Taslimi P , OsmanovaS, Gulçinİet al. Discovery of potent carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase enzymes inhibitors: the new amides and thiazolin-4-ones synthesized on an acetophenone base. J. Biochem. Mol. Toxicol.31(9), e21931 (2017).
  • Raza R , SaeedA, ArifMet al. Synthesis and biological evaluation of 3-thiazolocoumarinyl schiff-base derivatives as cholinesterase inhibitors. Chem. Biol. Drug Des.80(4), 605–615 (2012).
  • Shi J , ZhouY, WangKet al. Design, synthesis and biological evaluation of Schiff base derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Med. Chem. Res.30, 624–634 (2021).
  • Abedi-Jazini Z , SafariJ, ZarnegarZ, SadeghiM. A simple and efficient method for the synthesis of 2-aminothiazoles under mild conditions. Polycycl. Aromat. Compd38(3), 231–235 (2018).
  • Rahim F , JavedMT, UllahHet al. Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg. Chem.62, 106–116 (2015).
  • Hoan DQ . Reaction of Schiff bases with thioglycolic acid: synthesis of thiazepine-1(2H)-one and thiazolin-4-one compounds. Hue Univer. J. Sci. Nat. Sci.127(1A), 5–14 (2018).
  • Sharma D , KumarS, NarasimhanBet al. 4-(4-Bromophenyl)-thiazol-2-amine derivatives: synthesis, biological activity and molecular docking study with ADME profile. BMC Chem.13(1), 60 (2019).
  • Dingova D , LeroyJ, CheckA, GarajV, KrejciE, HrabovskaA. Optimal detection of cholinesterase activity in biological samples: modifications to the standard Ellman’s assay. Anal. Biochem.462, 67–75 (2014).
  • Magalhães LM , SegundoMA, ReisS, LimaJL. Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal. Chim. Acta558(1–2), 310–318 (2006).
  • Elmastaş M , GülçinI, BeydemirŞ, İrfanKüfrevioğlu Ö, Aboul-EneinHY. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal. Lett.39(1), 47–65 (2006).
  • Gupta VK , SinghAK, KumawatLK. Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sens. Actuat. B Chem.195, 98–108 (2014).
  • Schrödinger Release 2018-3: Glide. Schrödinger, LLC, NY, USA (2018).
  • Friesner RA , MurphyRB, RepaskyMPet al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem.49(21), 6177–6196 (2006).
  • Schrödinger Release 2018-3: LigPrep. Schrödinger, LLC, NY, USA (2018).
  • Wang Y , XingJ, XuYet al. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys.48(4), 488–515 (2015).
  • Clark DE . Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci.88(8), 807–814 (1999).
  • Kelder J , GrootenhuisPD, BayadaDM, DelbressineLP, PloemenJP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res.16, 1514–1519 (1999).
  • Almeida H , VieiraAC, TeixeiraJet al. Cell-based intestinal in vitro models for drug absorption screening. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays.Springer International Publishing, Cham, 1–22 (2022).
  • Irvine JD , TakahashiL, LockhartKet al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci.88(1), 28–33 (1999).
  • Ma XL , ChenC, YangJ. Predictive model of blood–brain barrier penetration of organic compounds. Acta Pharmacol. Sin.26(4), 500–512 (2005).
  • Bekker H , BerendsenHJ, DijkstraEJet al. GROMACS–a parallel computer for molecular-dynamics simulations. Presented at: 4th International Conference on Computational Physics (PC 92).World Scientific Publishing, 252–256, 24–28 August (1992).
  • Ganesan A , CooteML, BarakatK. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov. Today22(2), 249–269 (2017).
  • Schmid N , EichenbergerAP, ChoutkoAet al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J.40, 843–856 (2011).
  • Van Aalten DM , BywaterR, FindlayJB, HendlichM, HooftRW, VriendG. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des.10, 255–262 (1996).
  • Mark P , NilssonL. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys Chem. A105(43), 9954–9960 (2001).
  • Van Gunsteren WF , BerendsenHJ. A leap-frog algorithm for stochastic dynamics. Mol. Simul.1(3), 173–185 (1988).
  • Berendsen HJ , vander Spoel D, van DrunenR. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys Commun.91(1–3), 43–56 (1995).
  • Hess B , BekkerH, BerendsenHJ, FraaijeJG. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem.18(12), 1463–1472 (1997).
  • Di Pierro M , ElberR, LeimkuhlerB. A stochastic algorithm for the isobaric-isothermal ensemble with Ewald summations for all long range forces. J. Chem. Theory Comput.11(12), 5624–5637 (2015).
  • Humphrey W , DalkeA, SchultenK. VMD: visual molecular dynamics. J. Mol. Graph.14(1), 33–38 (1996).
  • Rawat R , KantK, KumarA, BhatiK, VermaSM. HeroMDAnalysis: an automagical tool for GROMACS-based molecular dynamics simulation analysis. Future Med. Chem.13(05), 447–456 (2021).
  • Vaught A . Graphing with Gnuplot and Xmgr: two graphing packages available under linux. Linux J. (28es), 7es (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.