847
Views
5
CrossRef citations to date
0
Altmetric
Autophagic Punctum

STING recruits WIPI2 for autophagosome formation

ORCID Icon &
Pages 928-929 | Received 15 Mar 2023, Accepted 06 Apr 2023, Published online: 13 Apr 2023
 

ABSTRACT

Induction of autophagy is a primordial function of the cGAS-STING pathway. However, the molecular mechanisms regulating autophagosome formation during STING-induced autophagy remain largely unknown. Recently, we reported that STING directly interacts with WIPI2 to recruit WIPI2 onto STING-positive vesicles for LC3 lipidation and autophagosome formation. We found that STING and PtdIns3P competitively bind to the FRRG motif of WIPI2, resulting in a mutual inhibition between STING-induced and PtdIns3P-dependent autophagy. We also showed that STING-WIPI2 interaction is necessary for cells to clear cytoplasmic DNA and attenuate activated cGAS-STING signaling. In summary, by identifying the interaction between STING and WIPI2, our study revealed a mechanism that allows STING to bypass the canonical upstream machinery to induce autophagosome formation.

Abbreviations: ATG: autophagy-related; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; cGAMP: cyclic GMP-AMP; cGAS: cyclic GMP-AMP synthase; ER: endoplasmic reticulum; ERGIC: ER-Golgi intermediate compartment; IRF3: interferon regulatory factor 3; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1: sequestosome 1; STING: stimulator of interferon genes; TBK1: TANK-binding kinase 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by the Key R&D Plan of the Ministry of Science and Technology of China [2021YFA1300303], the National Natural Science Foundation of China [32230023, 92057203 and 31970694], the Fundamental Research Funds for the Central Universities [2020×ZZX002-16], the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) [2019QNRC001], and the Chao Kuang Piu High-tech Development Fund [2020QN024].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 475.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.