3
Views
0
CrossRef citations to date
0
Altmetric
Agricultural Analysis

Manganese(II)-Enhanced Graphene Oxide Fluorescence Switch-Based Hybridization Chain Reaction for the Enzyme-Free and Sensitive Determination of Bacillus thuringiensis (Bt) in Transgenic Crops

, , , , &
Received 11 Jul 2023, Accepted 28 Apr 2024, Published online: 08 May 2024

References

  • Cai, G., Z. Yu, R. Ren, and D. Tang. 2018. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS QDs/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sensors 3 (3):632–9. doi: 10.1021/acssensors.7b00899.
  • Chen, D., H. Feng, and J. Li. 2012. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 112 (11):6027–53. doi: 10.1021/cr300115g.
  • Chen, K., L. Wu, X. Jiang, Z. Lu, and H. Han. 2014. Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosensors & Bioelectronics 62:196–200. doi: 10.1016/j.bios.2014.06.046.
  • Chu, X. L., D. S. Zhu, M. Liu, L. R. Kong, and S. Y. Ai. 2022. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. New Journal of Chemistry 46 (17):7872–8. doi: 10.1039/D2NJ00647B.
  • Cui, H. F., L. Cheng, J. Zhang, R. H. Liu, C. Zhang, and H. Fan. 2014. An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Biosensors and Bioelectronics 56:124–8. doi: 10.1016/j.bios.2013.12.027.
  • Emanuel, P. A., J. Dang, J. S. Gebhardt, J. Aldrich, E. A. Garber, H. Kulaga, P. Stopa, J. J. Valdes, and A. Dion-Schultz. 2000. A. Recombinant antibodies: A new reagent for biological agent detection. Biosensors & Bioelectronics 14 (10-11):751–9. doi: 10.1016/s0956-5663(99)00058-5.
  • Gao, Y., Y. Zh, L. Huang, Y. Zeng, X. Liu, and D. Tang. 2023. Photoinduced electron transfer modulated photoelectric signal: Towards organic small molecule-based photoelectrochemical platform for formaldehyde detection. Analytical Chemistry 95 (23):9130–7. doi: 10.1021/acs.analchem.3c01690.
  • Hiroshi, A., W. Takahiro, W. Kaoru, N. Shinsuke, Y. Shuji, S. Kozue, C. Ryoko, S. Frank, H. Akihiro, and M. Tamio. 2005. Quantitative detection system for maize sample containing combined-trait genetically modified maize. Analytical Chemistry 77:7421–8.
  • Holst-Jensen, A. 2009. Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnology Advances 27 (6):1071–82. doi: 10.1016/j.biotechadv.2009.05.025.
  • Huang, Z., B. Liu, and J. Liu. 2019. Mn2+-assisted DNA oligonucleotide adsorption on Ti2C MXene nanosheets. Langmuir 35 (30):9858–66. doi: 10.1021/acs.langmuir.9b01810.
  • Hutchison, W. D., E. C. Burkness, P. D. Mitchell, R. D. Moon, T. W. Leslie, S. J. Fleischer, M. Abrahamson, K. L. Hamilton, K. L. Steffey, M. E. Gray, et al. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330 (6001):222–5. doi: 10.1126/science.1190242.
  • Liu, B., S. Salgado, V. Maheshwari, and J. Liu. 2016. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Current Opinion in Colloid & Interface Science 26:41–9. doi: 10.1016/j.cocis.2016.09.001.
  • Liu, B., Z. Sun, X. Zhang, and J. Liu. 2013. Mechanisms of DNA sensing on graphene oxide. Analytical Chemistry 85 (16):7987–93. doi: 10.1021/ac401845p.
  • Liu, Z., B. Liu, J. Ding, and J. Liu. 2014. Fluorescent sensors using DNA-functionalized graphene oxide. Analytical and Bioanalytical Chemistry 406 (27):6885–902. doi: 10.1007/s00216-014-7888-3.
  • Ma, J. L., B. C. Yin, H. Le, and B. C. Ye. 2015a. Label-free detection of sequence-specific DNA based on fluorescent silver nanoclusters-assisted surface plasmon-enhanced energy transfer. ACS Applied Materials & Interfaces 7 (23):12856–63. doi: 10.1021/acsami.5b03837.
  • Ma, P., F. Liang, Q. Diao, D. Wang, Q. Yang, D. Gao, D. Song, and X. Wang. 2015b. Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au-Ag core-shell nanorods. RSC Advances 5 (41):32168–74. doi: 10.1039/C5RA04423E.
  • Morisset, D., D. Dobnik, S. Hamels, J. Zel, and K. Gruden. 2008. NAIMA: Target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Research 36 (18):e118–e118. doi: 10.1093/nar/gkn524.
  • Quist, D., and I. H. Chapela. 2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414 (6863):541–3. doi: 10.1038/35107068.
  • Rasheed, P. A., and N. Sandhyarani. 2015. A highly sensitive DNA sensor for attomolar detection of the BRCA1 gene: Signal amplification with gold nanoparticle clusters. The Analyst 140 (8):2713–8. doi: 10.1039/c5an00004a.
  • Su, S., J. W. Fan, B. Xue, L. H. Yuwen, X. F. Liu, D. Pan, C. H. Fan, and L. H. Wang. 2014. Label-free impedimetric sensing platform for microRNA-21 based on ZrO2-reduced graphene oxide nanohybrids coupled with catalytic hairpin assembly amplification. ACS Applied Materials & Interfaces 6 (2):1152–7. doi: 10.1021/am404811j.
  • Tian, T., Z. Q. Li, and E. Lee. 2014. Sequence-specific detection of DNA using functionalized graphene as an additive. Biosensors & Bioelectronics 53:336–9. doi: 10.1016/j.bios.2013.09.076.
  • Wang, H., R. Yang, L. Yang, and W. Tan. 2009. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3 (9):2451–60. doi: 10.1021/nn9006303.
  • Wu, L., M. Deng, X. Tan, W. Yin, F. Ding, and H. Han. 2018. Ratiometric fluorescence sensor for the sensitive detection of Bacillus thuringiensis transgenic sequence based on silica coated supermagnetic nanoparticles and quantum dots. Sensors and Actuators B 254:206–13. doi: 10.1016/j.snb.2017.07.021.
  • Wu, L., X. Xiao, K. Chen, W. Yin, Q. Li, P. Wang, Z. Lu, J. Ma, and H. Han. 2017. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@ Ag NRs and magnetic beads. Biosensors & Bioelectronics 92:321–7. doi: 10.1016/j.bios.2016.11.005.
  • Wu, Z., G. Liu, X. Yang, and J. Jiang. 2015. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. Journal of the American Chemical Society 137 (21):6829–36. doi: 10.1021/jacs.5b01778.
  • Yang, L., A. Pan, J. Jia, J. Ding, J. Chen, H. Cheng, C. Zhang, and D. Zhang. 2005. Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. Journal of Agricultural and Food Chemistry 53 (2):183–90. doi: 10.1021/jf0493730.
  • Yu, Z., C. Qiu, L. Huang, Y. Gao, and D. Tang. 2023. Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff. Analytical Chemistry 95 (8):4212–9. doi: 10.1021/acs.analchem.2c05617.
  • Zeng, R., L. Zhang, L. Su, Z. Luo, Q. Zhou, and D. Tang. 2019. Photoelectrochemical bioanalysis of antibiotics on rGO-Bi2WO6-Au based on branched hybridization chain reaction. Biosensors & Bioelectronics 133:100–6. doi: 10.1016/j.bios.2019.02.067.
  • Zeng, R., Z. Luo, L. Zhang, and D. Tang. 2018. Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Analytical Chemistry 90 (20):12299–306. doi: 10.1021/acs.analchem.8b03889.
  • Zhang, J., S. P. Song, L. H. Wang, D. Pan, and C. H. Fan. 2007. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature Protocols 2 (11):2888–95. doi: 10.1038/nprot.2007.419.
  • Zhang, J., Z. Li, S. Zhao, and Y. Lu. 2016. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. The Analyst 141 (13):4029–34. doi: 10.1039/c6an00368k.
  • Zhang, K., S. Lv, Q. Zhou, and D. Tang. 2020. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sensors and Actuators B: Chemical 307:127631. doi: 10.1016/j.snb.2019.127631.
  • Zhu, C., Z. Zeng, H. Li, F. Li, C. Fan, and H. Zhang. 2013. SingleLayer MoS2-based nanoprobes for homogeneous detection of biomolecules. Journal of the American Chemical Society 135 (16):5998–6001. doi: 10.1021/ja4019572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.