52
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Evolution behavior of adhesion force with continually changed relative humidity revealed on AFM

, &
Received 01 Mar 2024, Accepted 09 Apr 2024, Published online: 16 Apr 2024

References

  • Maboudian, R.; Howe, R. T. Critical Review: Adhesion in Surface Micromechanical Structures. J. Vac. Sci. Technol. B. 1997, 15(1), 1–20. DOI: 10.1116/1.589247.
  • Zhao, Y. P.; Wang, L. S.; Yu, T. X. Mechanics of Adhesion in MEMS - a Review. J. Adhes Sci. Technol. 2003, 17(4), 519–546. DOI: 10.1163/15685610360554393.
  • Zaghloul, U.; Papaioannou, G.; Bhushan, B.; Coccetti, F.; Pons, P.; Plana, R. On the Reliability of Electrostatic NEMS/MEMS Devices: Review of Present Knowledge on the Dielectric Charging and Stiction Failure Mechanisms and Novel Characterization Methodologies. Microelectron. Reliab. 2011, 51(9–11), 1810–1818. DOI: 10.1016/j.microrel.2011.07.081.
  • Butt, H. J.; Cappella, B.; Kappl, M. Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Sur. Sci. Rep. 2005, 59(1–6), 1–152. DOI: 10.1016/j.surfrep.2005.08.003.
  • Leite, F. L.; Bueno, C. C.; Da Roz, A. L.; Ziemath, E. C.; Oliveira, O. N., Jr. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. Int. J. Mol. Sci. 2012, 13(10), 12773–12856. DOI: 10.3390/ijms131012773.
  • Harrison, A. J.; Corti, D. S.; Beaudoin, S. P. Capillary Forces in Nanoparticle Adhesion: A Review of AFM Methods. Part. Sci. Technol. 2015, 33(5), 526–538. DOI: 10.1080/02726351.2015.1045641.
  • Jang, J.; Yang, M.; Schatz, G. Microscopic Origin of the Humidity Dependence of the Adhesion Force in Atomic Force Microscopy. J. Chem. Phys. 2007, 126(17), 174705. DOI: 10.1063/1.2734548.
  • Kim, H.; Smit, B.; Jang, J. Monte Carlo Study on the Water Meniscus Condensation and Capillary Force in Atomic Force Microscopy. J. Phys. Chem. C. 2012, 116(41), 21923–21931. DOI: 10.1021/jp307811q.
  • Harrison, A. J.; Beaudoin, S. P.; Corti, D. S. Wang-Landau Monte Carlo Simulation of Capillary Forces at Low Relative Humidity in Atomic Force Microscopy. J. Adhes. Sci. Technol. 2016, 30(11), 1165–1177. DOI: 10.1080/01694243.2016.1143581.
  • Wei, Z.; Zhao, Y. P. Growth of Liquid Bridge in AFM. J. Phys D: Appl Phys. 2007, 40(14), 4368–4375. DOI: 10.1088/0022-3727/40/14/036.
  • Rabinovich, Y. I.; Singh, A.; Hahn, M.; Brown, S.; Moudgil, B. Kinetics of Liquid Annulus Formation and Capillary Forces. Langmuir. 2011, 27(22), 13514–13523. DOI: 10.1021/la202191c.
  • Sirghi, L. Transport Mechanisms in Capillary Condensation of Water at a Single-Asperity Nanoscopic Contact. Langmuir. 2012, 28(5), 2558–2566. DOI: 10.1021/la202917d.
  • Xiao, X.; Qian, L. Investigation of Humidity-Dependent Capillary Force. Langmuir. 2000, 16(21), 8153–8158. DOI: 10.1021/la000770o.
  • Asay, D. B.; Kim, S. H. Effects of Adsorbed Water Layer Structure on Adhesion Force of Silicon Oxide Nanoasperity Contact in Humid Ambient. J. Chem. Phys. 2006, 124(17), 174712. DOI: 10.1063/1.2192510.
  • Jones, R.; Pollock, H. M.; Cleaver, J. A. S.; Hodges, C. S. Adhesion Forces Between Glass and Silicon Surfaces in Air Studied by AFM: Effects of Relative Humidity, Particle Size, Roughness, and Surface Treatment. Langmuir. 2002, 18(21), 8045–8055. DOI: 10.1021/la0259196.
  • Köber, M.; Sahagún, E.; García-Mochales, P.; Briones, F.; Luna, M.; Sáenz, J. J. Nanogeometry Matters: Unexpected Decrease of Capillary Adhesion Forces with Increasing Relative Humidity. Small. 2010, 6(23), 2725–2730. DOI: 10.1002/smll.201001297.
  • Weeks, B. L.; Vaughn, M. W.; DeYoreo, J. J. Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy. Langmuir. 2005, 21(18), 8096–8098. DOI: 10.1021/la0512087.
  • Gordillo, M. C.; Martı́, J. Molecular Dynamics Description of a Layer of Water Molecules on a Hydrophobic Surface. J. Chem. Phys. 2002, 117(7), 3425–3430. DOI: 10.1063/1.1495843.
  • Asay, D. B.; Kim, S. H. Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem B. 2005, 109(109), 16760–16763. DOI: 10.1021/jp053042o.
  • Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M. Growth and Structure of Water on SiO2 Films on Si Investigated by Kelvin Probe Microscopy and in situ X-Ray Spectroscopies. Langmuir. 2007, 23(19), 9699–9703. DOI: 10.1021/la700893w.
  • Asay, D. B.; Barnette, A. L.; Kim, S. H. Effects of Surface Chemistry on Structure and Thermodynamics of Water Layers at Solid-Vapor Interfaces. J. Phys. Chem. C. 2009, 113(6), 2128–2133. DOI: 10.1021/jp806815p.
  • Willard, A. P.; Chandler, D. The Molecular Structure of the Interface Between Water and a Hydrophobic Substrate Is Liquid-Vapor Like. J. Chem. Phys. 2014, 141(18), 18C519. DOI: 10.1063/1.4897249.
  • Chen, L.; He, X.; Liu, H.; Qian, L.; Kim, S. H. Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon. J. Phys. Chem. C. 2018, 122(21), 11385–11391. DOI: 10.1021/acs.jpcc.8b01821.
  • Halsey, G. Physical Adsorption on Non‐Uniform Surfaces. J. Chem. Phys. 1948, 16(10), 931–937. DOI: 10.1063/1.1746689.
  • Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: London and New York, 1949.
  • Hill, T. L. Physical Adsorption and the Free Volume Model for Liquids. J. Chem. Phys. 1949, 17(6), 590–590. DOI: 10.1063/1.1747341.
  • Eastman, T.; Zhu, D.-M. Adhesion Forces Between Surface-Modified AFM Tips and a Mica Surface. Langmuir. 1996, 12(11), 2859–2862. DOI: 10.1021/la9504220.
  • Lai, T.; Sun, J.; Chen, Y. Relative Humidity Is Not a Direct Factor to Influence Adhesion Force Between Two Silica Surfaces. J. Adhes. 2020, 98(5), 413–428. DOI: 10.1080/00218464.2020.1839429.
  • Xiao, C.; Shi, P.; Yan, W.; Chen, L.; Qian, L.; Kim, S. H. Thickness and Structure of Adsorbed Water Layer and Effects on Adhesion and Friction at Nanoasperity Contact. Colloids Interfaces. 2019, 3(3), 55. DOI: 10.3390/colloids3030055.
  • Chen, L.; Qian, L. Role of Interfacial Water in Adhesion, Friction, and Wear—A Critical Review. Friction. 2021, 9(1), 1–28. DOI: 10.1007/s40544-020-0425-4.
  • Çolak, A.; Wormeester, H.; Zandvliet, H. J. W.; Poelsema, B. The Influence of Instrumental Parameters on the Adhesion Force in a Flat-On-Flat Contact Geometry. Appl. Surf. Sci. 2014, 308, 106–112. DOI: 10.1016/j.apsusc.2014.04.118.
  • Çolak, A.; Wormeester, H.; Zandvliet, H. J. W.; Poelsema, B. The Influence of Instrumental Parameters on the Adhesion Force in a Flat-On-Rough Contact Geometry. Appl. Sur. Sci. 2015, 353, 1285–1290. DOI: 10.1016/j.apsusc.2015.07.076.
  • Bartošík, M.; Kormoš, L.; Flajšman, L.; Kalousek, R.; Mach, J.; Lišková, Z.; Nezval, D.; Švarc, V.; Šamořil, T.; Šikola, T. Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change. J. Phys. Chem B. 2017, 121(3), 610–619. DOI: 10.1021/acs.jpcb.6b11108.
  • Butt, H.-J.; Farshchi-Tabrizi, M.; Kappl, M. Using Capillary Forces to Determine the Geometry of Nanocontacts. J. Appl. Phys. 2006, 100(2), 024312. DOI: 10.1063/1.2210188.
  • Çolak, A.; Wormeester, H.; Zandvliet, H. J. W.; Poelsema, B. Surface Adhesion and Its Dependence on Surface Roughness and Humidity Measured with a Flat Tip. Appl. Surf. Sci. 2012, 258(18), 6938–6942. DOI: 10.1016/j.apsusc.2012.03.138.
  • Ondarçuhu, T.; Fabié, L. Capillary Forces in Atomic Force Microscopy and Liquid Nanodispensing. In Surface Tension in Microsystems; Lambert, P., Ed.; Springer: Berlin, Heidelberg, 2013; pp. 279–305.
  • Farshchi-Tabrizi, M.; Kappl, M.; Butt, H.-J. Influence of Humidity on Adhesion: An Atomic Force Microscope Study. J. Adhes. Sci. Technol. 2008, 22(2), 181–203. DOI: 10.1163/156856108x306948.
  • Zarate, N. V.; Harrison, A. J.; Litster, J. D.; Beaudoin, S. P. Effect of Relative Humidity on Onset of Capillary Forces for Rough Surfaces. J. Colloid. Interface. Sci. 2013, 411, 265–272. DOI: 10.1016/j.jcis.2013.05.048.
  • Tang, B.; Tang, C.; Chen, L.; Xiao, C.; Rosenkranz, A.; Qian, L. Nanoscopic Humidity-Dependent Adhesion Behaviors of 2D Materials. Appl. Surf. Sci. 2022, 572, 151394. DOI: 10.1016/j.apsusc.2021.151394.
  • Tang, J.; Wang, C.; Liu, M. Z.; Su, M.; Bai, C. L. Effect of Humidity on the Surface Adhesion Force of Inorganic Crystals by the Force Spectrum Method. Chin. Sci. Bull. 2001, 46(11), 912–914. DOI: 10.1007/bf02900464.
  • Lin, Y.-T.; Walczak, W.; Banerjee, J.; Smith, N. J.; Agnello, G.; Zoba, A. N.; Manley, R.; Kim, S. H. Particle Size and Humidity Effects on Nanocellulose Adhesion to Glass: Implications for Mitigating Particulate Contamination in Industrial Processes. ACS Appl. Nano Mater. 2022, 5(11), 17004–17011. DOI: 10.1021/acsanm.2c03938.
  • Shin, D.; Choi, W. T.; Lin, H.; Qu, Z.; Breedveld, V.; Meredith, J. C. Humidity-Tolerant Rate-Dependent Capillary Viscous Adhesion of Bee-Collected Pollen Fluids. Nat. Commun. 2019, 10(1), 1379. DOI: 10.1038/s41467-019-09372-x.
  • Ito, S.; Gorb, S. N. Fresh “Pollen Adhesive” Weakens Humidity-Dependent Pollen Adhesion. ACS Appl. Mater. Interfaces. 2019, 11(27), 24691–24698. DOI: 10.1021/acsami.9b04817.
  • Tan, D.; Luo, A.; Wang, X.; Shi, Z.; Lei, Y.; Steinhart, M.; Kovalev, A.; Gorb, S. N.; Turner, K. T.; Xue, L. Humidity-Modulated Core–Shell Nanopillars for Enhancement of Gecko-Inspired Adhesion. ACS Appl. Nano Mater. 2020, 3(4), 3596–3603. DOI: 10.1021/acsanm.0c00314.
  • Materzok, T.; Gorb, S.; Müller-Plathe, F. Gecko Adhesion: A Molecular-Simulation Perspective on the Effect of Humidity. Soft Matter. 2022, 18(6), 1247–1263. DOI: 10.1039/D1SM01232K.
  • Persson, B. N. J. Influence of Humidity on the Binding of Stone Fragments via Capillary Bridges. Europhys. Lett. 2022, 137(4), 46001. DOI: 10.1209/0295-5075/ac5fcf.
  • Stevenson, C. A.; Scheirey, S.; Monroe, J.; Zhang, R.; Main, E.; Jones, O.; Cheah, W.; Park, S.; Nobbe, B.; Sura, I., et al. The Effects of Surface and Particle Properties on Adhesion in Humid Environments Using the Enhanced Centrifuge Method. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130478. DOI: 10.1016/j.colsurfa.2022.130478.
  • Birleanu, C.; Pustan, M.; Rusu, F.; Dudescu, C.; Muller, R.; Baracu, A. Relative Humidity Influence on Adhesion Effect in MEMS Flexible Structures. Microsyst. Technol. 2022, 28(6), 1–11. DOI: 10.1007/s00542-018-3848-8.
  • Lai, T.; Chen, Y.; Zhang, Y. Evolution of Adhesion Force Behavior at the Silica-HOPG Interface from Humidity-Independent to Humidity-Dependent Revealed on an AFM. J. Adhes. 2023, 99(16), 2402–2433. DOI: 10.1080/00218464.2023.2185515.
  • Lai, T.; Zhu, T.; Chen, Y.; Guo, M. Different Evolution Behaviors of Adhesion Force with Relative Humidity at Silica/Silica and Silica/Graphene Interfaces Studied Using Atomic Force Microscopy. Langmuir. 2021, 37(44), 13075–13084. DOI: 10.1021/acs.langmuir.1c02221.
  • Shi, K.; Hu, M.; Huang, P. Influences of Relative Humidity and Dwell Time on Silica/Graphene Adhesion Force of a Cone–Plane Contact. Langmuir. 2022, 38(41), 12432–12440. DOI: 10.1021/acs.langmuir.2c01294.
  • Shi, K.; Hu, M.; Huang, P. Time Dependence of the Graphene Surface Adhesion Force of the Sphere–Plane Contact at Different Relative Humidities. Langmuir. 2024, 40(1), 677–686. DOI: 10.1021/acs.langmuir.3c02917.
  • Lai, T.; Chen, M.; Zhang, Y. Contact Time Dependence of Adhesion Force at Silica/Silica Interface on AFM: Influence of Relative Humidity and Contact History. Appl. Surf. Sci. 2022, 600, 154175. DOI: 10.1016/j.apsusc.2022.154175.
  • Lai, T.; Zhang, Y.; Zhu, T. Contact Time Dependence of Adhesion Force Studied at Low, Moderate, and High Relative Humidities on AFM: Influence of Surface Hydrophilicity. Appl. Surf. Sci. 2024, 649, 159124. DOI: 10.1016/j.apsusc.2023.159124.
  • Sedin, D. L.; Rowlen, K. L. Adhesion Forces Measured by Atomic Force Microscopy in Humid Air. Anal. Chem. 2000, 72(10), 2183–2189. DOI: 10.1021/ac991198c.
  • Wei, Z.; Sun, Y.; Ding, W.; Wang, Z. The Formation of Liquid Bridge in Different Operating Modes of AFM. Sci. China Phys. Mech. 2016, 59(9), 1–9. DOI: 10.1007/s11433-016-0241-7.
  • Ostendorf, F.; Schmitz, C.; Hirth, S.; Kuehnle, A.; Kolodziej, J. J.; Reichling, M. Evidence for Potassium Carbonate Crystallites on Air-Cleaved Mica Surfaces. Langmuir. 2009, 25(18), 10764–10767. DOI: 10.1021/la901311k.
  • Himpsel, F. J.; McFeely, F. R.; Talebibrahimi, A.; Yarmoff, J. A.; Hollinger, G. Microscopic Structure of the SiO2/Si Interface. Phys. Rev. B. 1988, 38(9), 6084–6096. DOI: 10.1103/PhysRevB.38.6084.
  • Gusev, E. P.; Lu, H. C.; Gustafsson, T.; Garfunkel, E. Growth Mechanism of Thin Silicon Oxide Films on Si(100) Studied by Medium-Energy Ion Scattering. Phys. Rev. B. 1995, 52(3), 1759–1775. DOI: 10.1103/PhysRevB.52.1759.
  • Habib, S. B.; Gonzalez, E., II; Hicks, R. F. Atmospheric Oxygen Plasma Activation of Silicon (100) Surfaces. J. Vac. Sci. Technol. A. 2010, 28(3), 476–485. DOI: 10.1116/1.3374738.
  • Lai, T.; Huang, P.; Cai, Y. Adhesion Reduction of Diamond-Like Carbon Films Based on Different Contact Geometries by Using an AFM. J. Adhes. 2016, 92(1), 18–38. DOI: 10.1080/00218464.2014.987867.
  • Hutter, J. L.; Bechhoefer, J. Calibration of Atomic-Force Microscope Tips. Rev. Sci. Instrum. 1993, 64(7), 1868–1873. DOI: 10.1063/1.1143970.
  • Carpick, R. W.; Batteas, J.; Boer, M. P. Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films. In Springer Handbook of Nanotechnology. Bhushan, B., Ed. Springer: Heidelberg, Germany, 2007; pp 951–980.
  • Lai, T.; Meng, Y. Logarithmic Contact Time Dependence of Adhesion Force and Its Dominant Role Among the Effects of AFM Experimental Parameters Under Low Humidity. Appl. Surf. Sci. 2017, 419, 294–304. DOI: 10.1016/j.apsusc.2017.04.220.
  • Garcia, R. Nanomechanical Mapping of Soft Materials with the Atomic Force Microscope: Methods, Theory and Applications. Chem. Soc. Rev. 2020, 49(16), 5850–5884. DOI: 10.1039/D0CS00318B.
  • Hao, H. W.; Baró, A. M.; Sáenz, J. J. Electrostatic and Contact Forces in Force Microscopy. J. Vac. Sci. Technol. B. 1991, 9(2), 1323–1328. DOI: 10.1116/1.585188.
  • Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion Between Nanoscale Rough Surfaces - I. Role of Asperity Geometry. J. Vac. Sci. Technol. 2000, 232(1), 10–16. DOI: 10.1006/jcis.2000.7167.
  • Israelachvilli, J. Intermolecular and Surface Forces; Elsevier Pte Ltd: Singapore, 2011; pp. 253–255.
  • Senden, T. J.; Drummond, C. J. Surface Chemistry and Tip-Sample Interactions in Atomic Force Microscopy. Colloids Surf. A Physicochem. Eng. Asp. 1995, 94(1), 29–51. DOI: 10.1016/0927-7757(94)02954-Q.
  • Adamson, A. W.; Gast, A. P. Physical Chemistry of Surfaces, 6th ed. John Wiley & Sons: New York, NY, USA, 1996.
  • Zhao, G.; Tan, Q.; Xiang, L.; Cai, D.; Zeng, H.; Yi, H.; Ni, Z.; Chen, Y. Structure and Properties of Water Film Adsorbed on Mica Surfaces. J. Chem. Phys. 2015, 143(10), 104705. DOI: 10.1063/1.4930274.
  • Mu, R.; Zhao, Z.-J.; Dohnálek, Z.; Gong, J. Structural Motifs of Water on Metal Oxide Surfaces. Chem. Soc. Rev. 2017, 46(7), 1785–1806. DOI: 10.1039/C6CS00864J.
  • Chilamakuri, S. K.; Bhushan, B. A Comprehensive Kinetic Meniscus Model for Prediction of Long-Term Static Friction. J. Appl. Phys. 1999, 86(8), 4649–4656. DOI: 10.1063/1.371416.
  • Zhao, Y. P. Physical Mechanics of Surfaces and Interfaces. Science Press: Beijing, China, 2012.
  • Lai, T.; Meng, Y. Time-Dependent Dynamic Behaviors of a Confined Liquid to Achieve Tailored Adhesion Force with Repeated Contacts Revealed by Atomic Force Microscopy. Langmuir. 2018, 34(50), 15211–15227. DOI: 10.1021/acs.langmuir.8b03164.
  • Rabinovich, Y. I.; Esayanur, M. S.; Moudgil, B. M. Capillary Forces Between Two Spheres with a Fixed Volume Liquid Bridge: Theory and Experiment. Langmuir. 2005, 21(24), 10992–10997. DOI: 10.1021/la0517639.
  • Lai, T.; Li, P. Direct Evidence of a Radius of Collection Area for Thin Film Flow in Liquid Bridge Formation by Repeated Contacts Using AFM. Langmuir. 2019, 35(20), 6585–6593. DOI: 10.1021/acs.langmuir.9b00827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.