53
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in mechanical characterization techniques and environmental effects on bi-material interfaces in microelectronics: a literature review

, ORCID Icon, , , &
Received 20 Mar 2024, Accepted 30 Apr 2024, Published online: 09 May 2024

References

  • Müller, G. The Czochralski Method – Where We Are 90 Years After Jan Czochralski’s Invention. Cryst. Res. Technol. 2007, 42(12), 1150–1161. DOI: 10.1002/crat.200711001.
  • Chen, A.; Lo, R. H. Y. Semiconductor Packaging: Materials Interaction and Reliability, 1st ed.; CRC Press: Boca Raton, 2016. DOI: 10.1201/b11260.
  • Greig, W. Integrated Circuit Packaging, Assembly and Interconnections; New York, USA: Springer Science & Business Media, 2007.
  • Li, Y.; Goyal, D. (Eds). 3D Microelectronic Packaging: From Fundamentals to Applications; Springer International Publishing: Cham, 2017; Springer Series in Advanced Microelectronics. DOI: 10.1007/978-3-319-44586-1.
  • Esashi, M. Wafer Level Packaging of MEMS. J. Micromech. Microeng. 2008, 18(7), 073001. DOI: 10.1088/0960-1317/18/7/073001.
  • Lau, J. H. Fan-Out Wafer-Level Packaging; Springer Singapore: Singapore, 2018. DOI: 10.1007/978-981-10-8884-1.
  • Tu, K. N. Reliability Challenges in 3D IC Packaging Technology. Microelectron. Reliab. 2011, 51(3), 517–523. DOI: 10.1016/j.microrel.2010.09.031.
  • Zhou, X.; Zhang, Y.; Wu, D.-Y.; Li, L.-P.; Wang, X.; Ji, C.-S.; Zhai, G.-F.; Kang, R. Interfacial Adhesion Between Electrical Contacts Determined by Surface Quality. J. Adhes. 2024, 1–13. DOI: 10.1080/00218464.2023.2300759.
  • Semiconductor Reliability Handbook. 2017.
  • Dudek, R. Popcorn Cracking. In The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects; Grossmann, G. Zardini, C., (Eds.); Springer: London, 2011; pp. 297–303. DOI: 10.1007/978-0-85729-236-0_14.
  • Kitano, M.; Nishimura, A.; Kawai, S.; Nishi, K. Analysis of Package Cracking During Reflow Soldering Process. 26th Annual Proceedings Reliability Physics Symposium 1988, Monterey, CA, USA: IEEE; 1988. pp. 90–95. DOI: 10.1109/RELPHY.1988.23432.
  • Zhao, L.-C.; Karimi, S.; Xu, L. An Experimental Investigation of Static and Fatigue Behavior of Various Adhesive Single Lap Joints Under Bending Loads Subjected to Hygrothermal and Thermal Conditions. J. Adhes. 2023, 1–22. DOI: 10.1080/00218464.2023.2270431.
  • Alpern, P.; Lee, K. C.; Dudek, R.; Tilgner, R. A Simple Model for the Mode I Popcorn Effect for IC Packages. Microelectron. Reliab. 2000, 40(8–10), 1503–1508. DOI: 10.1016/S0026-2714(00)00116-5.
  • Yu, J.; Song, J. Y.; Park, I. S. Analyses of the Practical Adhesion Strengths of the Metal/Polymer Interfaces in Electronic Packaging. J. Elec. Materi. 2002, 31(12), 1347–1352. DOI: 10.1007/s11664-002-0120-9.
  • Xu, L.; Lu, X.; Liu, J.; Du, X.; Zhang, Y.; Cheng, Z. Adhesion Behavior Between Epoxy Molding Compound and Different Leadframes in Plastic Packaging. 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China: IEEE; 2009. pp. 1039–1042. DOI: 10.1109/ICEPT.2009.5270581.
  • Van Driel, W. D.; Liu, C. J.; Zhang, G. Q.; Janssen, J. H. J.; Van Silfhout, R. B. R.; Van Gils, M. A. J.; Ernst, L. J. Prediction of Interfacial Delamination in Stacked IC Structures Using Combined Experimental and Simulation Methods. Microelectron. Reliab. 2004, 44(12), 2019–2027. DOI: 10.1016/j.microrel.2004.05.002.
  • G06900 - SEMI G69 - Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds. https://store-us.semi.org/products/g06900-semi-g69-test-method-for-measurement-of-adhesive-strength-between-leadframes-and-molding-compounds (accessed Feb 15, 2024).
  • van Driel, W. D.; van Gils, M. A. J.; van Silfhout, R. B. R.; Zhang, G. Q. Prediction of Delamination Related IC & Packaging Reliability Problems. Microelectron. Reliab. 2005, 45(9–11), 1633–1638. DOI: 10.1016/j.microrel.2005.07.065.
  • Low, S.; Singh, I.; Mori, T.; Mori, H. The Study of Silicon Passivation Polymer Adhesion to Epoxy Mold Compound Through Button Shear Strength; California, USA: IEEE, 2012; pp. 1684–1686.
  • Durix, L.; Dreßler, M.; Coutellier, D.; Wunderle, B. On the Development of a Modified Button Shear Specimen to Characterize the Mixed Mode Delamination Toughness. Eng. Fract. Mech. 2012, 84, 25–40. DOI: 10.1016/j.engfracmech.2011.12.015.
  • Chung, P. W.; Yuen, M. M.; Chan, P. C.; Ho, N. K.; Lam, D. C. Effect of Copper Oxide on the Adhesion Behavior of Epoxy Molding Compound-Copper Interface; California, USA: IEEE, 2002; pp. 1665–1670.
  • Srikanth, N.; Chan, L.; Vath, C. J., III. Adhesion Improvement of EMC–Leadframe Interface Using Brown Oxide Promoters. Thin. Solid. Films. 2006, 504(1–2), 397–400. DOI: 10.1016/j.tsf.2005.09.100.
  • G06300 - SEMI G63 - Test Method for Measurement of Die Shear Strength. https://store-us.semi.org/products/g06300-semi-g63-test-method-for-measurement-of-die-shear-strength (accessed Feb 15, 2024).
  • Kim, H.-S.; Huh, J.; Ryu, J. Investigation of Moisture-Induced Delamination Failure in a Semiconductor Package via Multi-Scale Mechanics. J. Phys. D. Appl. Phys. 2011, 44(3), 034007. DOI: 10.1088/0022-3727/44/3/034007.
  • Yin, H.; Liu, J.; Xia, H.; Guo, L.; Ao, X.; Luo, J.; Yang, Y. Effect of Combination of Microstructure and Surface Treatment on Shear Strength of Precision Bonded Joints. J. Adhes. 2024, 100(8), 668–685. DOI: 10.1080/00218464.2023.2246389.
  • Tollefsen, T. A.; Løvvik, O. M.; Aasmundtveit, K.; Larsson, A. Effect of Temperature on the Die Shear Strength of a Au-Sn SLID Bond. Metall. Mater. Trans. A. 2013, 44(7), 2914–2916. DOI: 10.1007/s11661-013-1725-8.
  • Nagase, K.; Fujii, A.; Zhong, K.; Kariya, Y. Fracture Simulation of Redistribution Layer in Fan-Out Wafer-Level Package Based on Fatigue Crack Growth Characteristics of Insulating Polymer. 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), 2022. pp. 1602–1607. DOI: 10.1109/ECTC51906.2022.00255.
  • Lu, X.; Xu, L.; Lai, H.; Du, X.; Liu, J.; Cheng, Z. Studies on Microstructure of Epoxy Molding Compound (EMC)-Leadframe Interface After Environmental Aging; Beijing, China: IEEE, 2009; pp. 1051–1053.
  • Cho, S.-J.; Paik, K.-W.; Kim, Y.-G. The Effect of the Oxidation of Cu-Base Leadframe on the Interface Adhesion Between Cu Metal and Epoxy Molding Compound. IEEE Trans. Comp. Packag. Manufact. Technol. B. 1997, 20(2), 167–175. DOI: 10.1109/96.575569.
  • Uddin, M. A.; Alam, M. O.; Chan, Y. C.; Chan, H. P. Adhesion Strength and Contact Resistance of Flip Chip on Flex Packages––Effect of Curing Degree of Anisotropic Conductive Film. Microelectron. Reliab. 2004, 44(3), 505–514. DOI: 10.1016/S0026-2714(03)00185-9.
  • Akhavan-Safar, A.; Ayatollahi, M.; Rastegar, S.; Da Silva, L. Impact of Geometry on the Critical Values of the Stress Intensity Factor of Adhesively Bonded Joints. J. Adhes. Sci. Technol. 2017, 31(18), 2071–2087. DOI: 10.1080/01694243.2017.1297064.
  • Klusák, J.; Profant, T.; Kotoul, M. Various Methods of Numerical Estimation of Generalized Stress Intensity Factors of Bi-Material Notches. Appl. Comput. Mech. 2009, 3(2), 297–304
  • Rambhatla, V. N. N. T.; Samet, D.; McCann, S. R.; Sitaraman, S. K. A Characterization Method for Interfacial Delamination of Copper/Epoxy Mold Compound Specimens Under Mixed Mode I/III Loading. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA: IEEE; 2017. pp. 1888–1893. DOI: 10.1109/ECTC.2017.291.
  • Kwatra, A.; Samet, D.; Sitaraman, S. K. Effect of Thermal Aging on Cohesive Zone Models to Study Copper Leadframe/Mold Compound Interfacial Delamination. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA: IEEE; 2015. pp. 1531–1537. DOI: 10.1109/ECTC.2015.7159801.
  • Lee, C.-C.; Huang, T.-C.; Hsia, C.-C.; Chiang, K.-N. Interfacial Fracture Investigation of Low-K Packaging Using J-Integral Methodology. IEEE. Trans. Adv. Packag. 2008, 31(1), 91–99. DOI: 10.1109/TADVP.2007.906244.
  • Lall, P.; Pandurangan, A. R. R. Interfacial Fracture Toughness of EMC/Substrate Interface Under Mode–I Dynamic Loading with Long-Term High Temperature Aging. 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA: IEEE; 2022. pp. 1–6. DOI: 10.1109/iTherm54085.2022.9899512.
  • Poshtan, E. A.; Rzepka, S.; Silber, C.; Wunderle, B. Accelerated Determination of Interfacial Fracture Toughness in Microelectronic Packages Under Cyclic Loading. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC); San Diego, CA, USA: IEEE; 2015. pp. 1524–1530. DOI: 10.1109/ECTC.2015.7159800.
  • Shirangi, M. H.; Wunderle, B.; Wittler, O.; Walter, H.; Michel, B. Modeling Cure Shrinkage and Viscoelasticity to Enhance the Numerical Methods for Predicting Delamination in Semiconductor Packages. EuroSimE 2009 - 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Delft, Netherlands: IEEE; 2009. pp. 1–8. DOI: 10.1109/ESIME.2009.4938412.
  • Shirangi, M. H.; Muller, W. H.; Michel, B. Effect of Nonlinear Hygro-Thermal and Residual Stresses on the Interfacial Fracture in Plastic IC Packages. 2009 59th Electronic Components and Technology Conference, San Diego, CA, USA: IEEE; 2009. pp. 232–238. DOI: 10.1109/ECTC.2009.5074022.
  • Wang, J.; Zou, D.; Lu, M.; Ren, W.; Liu, S. Evaluation of Interfacial Fracture Toughness of a Flip-Chip Package and a Bimaterial System by a Combined Experimental and Numerical Method. Eng. Fract. Mech. 1999, 64(6), 781–797. DOI: 10.1016/S0013-7944(99)00078-8.
  • Samet, D.; Kwatra, A.; Sitaraman, S. K. Cohesive Zone Parameters for a Cyclically Loaded Copper-Epoxy Molding Compound Interface. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA: IEEE; 2016. pp. 1011–1018. DOI: 10.1109/ECTC.2016.364.
  • Thijsse, J.; Van Driel, W. D.; Van Gils, M. A. J.; Van Der Sluis, O. Interfacial Adhesion Method for Semiconductor Applications Covering the Full Mode Mixity. 7th. International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, Como, Italy: IEEE; 2006. pp. 1–5. DOI: 10.1109/ESIME.2006.1643963.
  • Nied, H. F. Mechanics of Interface Fracture with Applications in Electronic Packaging. IEEE Trans. Device Mater. Reliab. 2003, 3(4), 129–143. DOI: 10.1109/TDMR.2003.820623.
  • McEnteggart, I. Characterisation of Interfacial Cracking in Microelectronic Packaging. Instron. Limited. 2011, 19, 6.
  • Sankarasubramanian, S.; Cruz, J.; Yazzie, K.; Sundar, V.; Subramanian, V.; Alazar, T.; Yagnamurthy, S.; Cetegen, E.; McCoy, D.; Malatkar, P. High-Temperature Interfacial Adhesion Strength Measurement in Electronic Packaging Using the Double Cantilever Beam Method. J. Electron. Packag. 2017, 139(2). DOI: 10.1115/1.4036356.
  • Dai, X.; Brillhart, M. V.; Ho, P. S. Adhesion Measurement for Electronic Packaging Applications Using Double Cantilever Beam Method. IEEE Trans. Compon. Packag. Technol. 2000, 23(1), 101–116. DOI: 10.1109/6144.833049.
  • Leung, S. Y. Y.; Sadeghinia, M.; Pape, H.; Ernst, L. J. Prediction of Mixed-Mode Interfacial Fracture from Cohesive Zone Finite Element Model: Testing and Determination of Fracture Process Parameters. 2011 12th Intellegence. Conference on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Linz, Austria: IEEE; 2011. pp. 17–77. DOI: 10.1109/ESIME.2011.5765852.
  • Walter, T.; Lederer, M.; Khatibi, G. Delamination of Polyimide/Cu Films Under Mixed Mode Loading. Microelectronics Reliability. (Proceedings of the 27th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis), 2016; pp. 281–286. DOI: 10.1016/j.microrel.2016.07.100.
  • Hentschel, R. L.; Hecker, M.; Hensel, M.; Lehr, M. U.; Breuer, D. Adhesion Analysis for On-Chip Interconnect Structures by Beam Bending Techniques with Optical Crack Length Determination. Microelectron. Eng. 2013, 106, 172–176. DOI: 10.1016/j.mee.2012.12.029.
  • Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints. https://www.astm.org/d3433-99r20.html (accessed Feb 15, 2024).
  • Morais, P.; Akhavan-Safar, A.; Carbas, R. J. C.; Marques, E. A. S.; Karunamurthy, B.; Da Silva, L. F. M. Mode I Fatigue and Fracture Assessment of Polyimide–Epoxy and Silicon–Epoxy Interfaces in Chip-Package Components. Polymers. 2024, 16(4), 463. DOI: 10.3390/polym16040463.
  • McAdams, B. J.; Pearson, R. A. Initiation and Propagation of Delaminations at the Underfill/Passivation Interface Relevant to Flip-Chip Assemblies. IEEE Trans. Device Mater. Reliab. 2004, 4(2), 169–175. DOI: 10.1109/TDMR.2004.829069.
  • Swaminathan, S.; Sikka, K. K.; Indyk, R. F.; Sinha, T. Measurement of Underfill Interfacial and Bulk Fracture Toughness in Flip-Chip Packages. Microelectron. Reliab. 2016, 66, 161–172. DOI: 10.1016/j.microrel.2016.09.008.
  • Mahan, K.; Kim, B.; Wu, B.; Han, B.; Kim, I.; Moon, H.; Hwang, Y. N. Modified Single Cantilever Adhesion Test for EMC/PSR Interface in Thin Semiconductor Packages. Microelectron. Reliab. 2016, 63, 134–141. DOI: 10.1016/j.microrel.2016.05.015.
  • Shin, D.; Lee, J.; Yoon, C.; Lee, G.; Hong, J.; Kim, N. Development of Single Cantilever Beam Method to Measure the Adhesion of Thin Film Adhesive on Silicon Chip. Eng. Fract. Mech. 2015, 133, 179–190. DOI: 10.1016/j.engfracmech.2014.10.004.
  • Chen, Z.; Cotterell, B.; Chen, W. Characterizing the Interfacial Fracture Toughness for Microelectronic Packaging. Surf. Interface. Anal. 1999, 28(1), 146–149. DOI: 10.1002/(SICI)1096-9918(199908)28:1<146:AID-SIA594>3.0.CO;2-N.
  • Sinha, T.; Sikka, K. K.; Yannitty, D. N.; Bodenweber, P. F. Measurements of Interfacial Strengths in Underfilled Flip-Chip Electronic Packages Using Wedge Delamination Method (WDM); Orlando, USA: IEEE, 2014; pp. 346–354.
  • Singh, H. K. Determining Interfacial Adhesion Performance and Reliability for Microelectronics Applications Using a Wedge Test Method. 2004. USA: Faculty of the Virginia Polytechnic Institute and State University.
  • Um, H.-J.; Lee, S.-M.; Lee, D.-W.; Ha, S.; Kim, H.-S. Mixed Mode Fracture Toughness of Epoxy Molding Compound/Printed Circuit Board Interface of Semiconductor Packages with Respect to Temperature and Moisture. Eng. Fract. Mech. 2023, 289, 109429. DOI: 10.1016/j.engfracmech.2023.109429.
  • Tay, A. A. O.; Lin, T. Y. Influence of Temperature, Humidity, and Defect Location on Delamination in Plastic IC Packages. IEEE Trans. Compon. Packag. Technol. 1999, 22(4), 512–518. DOI: 10.1109/6144.814966.
  • Tanaka, N.; Kitano, M.; Kumazawa, T.; Nishimura, A. Evaluating IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling. IEEE Trans. Compon. Packag. Technol. 1999, 22(3), 426–432. DOI: 10.1109/6144.796546.
  • Ikeda, T.; Nakagawa, S.; Koganemaru, M.; Kakara, T. Low Cycle Fatigue of an Interface Between a Substrate and Molding Resin in a Power Module; Kumamoto, Japan: IEEE, 2023; pp. 73–74.
  • Charalambides, P. G.; Lund, J.; Evans, A. G.; McMeeking, R. M. A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces. J. Appl. Mech. 1989, 56(1), 77–82. DOI: 10.1115/1.3176069.
  • Tran, H. T.; Shirangi, M. H.; Pang, X.; Volinsky, A. A. Temperature, Moisture and Mode-Mixity Effects on Copper Leadframe/EMC Interfacial Fracture Toughness. Int. J. Fract. 2014, 185(1–2), 115–127. DOI: 10.1007/s10704-013-9907-3.
  • Mahan, K.; Han, B. Four Point Bending Test for Adhesion Testing of Packaging Strictures: A Review. J. Microelectron. Packag Soc. 2014, 21(4), 33–39. DOI: 10.6117/kmeps.2014.21.4.033.
  • Yan, X.; Agarwal, R. K. Two Test Specimens for Determining the Interfacial Fracture Toughness in Flip-Chip Assemblies. J. Electron. Packag. 1998, 120(2), 150–155. DOI: 10.1115/1.2792607.
  • Calabretta, M.; Sitta, A.; Oliveri, S. M.; Sequenzia, G. Copper to Resin Adhesion Characterization for Power Electronics Application: Fracture Toughness and Cohesive Zone Analysis. Eng. Fract. Mech. 2022, 266, 108339. DOI: 10.1016/j.engfracmech.2022.108339.
  • Roham, S.; Hardikar, K.; Woytowitz, P. Crack Penetration and Deflection at a Bimaterial Interface in a Four-Point Bend Test. J. Mater. Res. 2004, 19(10), 3019–3027. DOI: 10.1557/JMR.2004.0376.
  • Brinckmann, S.; Völker, B.; Dehm, G. Crack Deflection in Multi-Layered Four-Point Bending Samples. Int. J. Fract. 2014, 190(1), 167–176. DOI: 10.1007/s10704-014-9981-1.
  • Schlottig, G.; Pape, H.; Wunderle, B.; Ernst, L. J. Induced Delamination of Silicon-Molding Compound Interfaces. EuroSimE 2009 - 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2009. pp. 1–4. DOI: 10.1109/ESIME.2009.4938478.
  • Reeder, J. R.; Crews, J. H. Mixed-Mode Bending Method for Delamination Testing. Aiaa. J. 1990, 28(7), 1270–1276. DOI: 10.2514/3.25204.
  • Thijsse, J.; van der Sluis, O.; van Dommelen, J. A. W.; van Driel, W. D.; Geers, M. G. D. Characterization of Semiconductor Interfaces Using a Modified Mixed Mode Bending Apparatus. Microelectron. Reliab. 2008, 48(3), 401–407. DOI: 10.1016/j.microrel.2007.06.003.
  • Reeder, J.; Crews, J. The Mixed-Mode Bending Method for Delamination Testing. 30th Structures, Structural Dynamics and Materials Conference, Mobile,AL,U.S.A.: American Institute of Aeronautics and Astronautics; 1989. DOI: 10.2514/6.1989-1347.
  • Xiao, A.; Schlottig, G.; Pape, H.; Wunderle, B.; Van Der Sluis, O.; Jansen, K. M. B.; Ernst, L. J. Establishing Mixed Mode Fracture Properties of EMC-Copper (-Oxide) Interfaces at Various Temperatures. 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China: IEEE; 2009. pp. 1138–1143. DOI: 10.1109/ICEPT.2009.5270607.
  • Ernst, L. J.; Xiao, A.; Wunderle, B.; Jansen, K. M. B.; Pape, H. Interface Characterization and Failure Modeling for Semiconductor Packages. 2008 10th Electronics Packaging Technology Conference, Singapore: IEEE; 2008. pp. 808–815. DOI: 10.1109/EPTC.2008.4763531.
  • Wunderle, B.; Schulz, M.; Keller, J.; Maus, I.; Pape, H.; Michel, B. Advanced Mixed-Mode Bending Test: A Rapid, Inexpensive and Accurate Method for Fracture-Mechanical Interface Characterisation. 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA: IEEE; 2012. pp. 176–186. DOI: 10.1109/ITHERM.2012.6231428.
  • Yeung, D. T. S.; Lam, D. C. C.; Yuen, M. M. F. Specimen Design for Mixed Mode Interfacial Fracture Properties Measurement in Electronic Packages. J. Electron. Packag. 2000, 122(1), 67–72. DOI: 10.1115/1.483137.
  • Raghavan, S.; Schmadlak, I.; Leal, G.; Sitaraman, S. K. Mixed-Mode Cohesive Zone Parameters for Sub-Micron Scale Stacked Layers to Predict Microelectronic Device Reliability. Eng. Fract. Mech. 2016, 153, 259–277. DOI: 10.1016/j.engfracmech.2015.12.013.
  • Schlottig, G.; Pape, H.; Xiao, A.; Wunderle, B.; Ernst, L. How to Fabricate Specimens for Silicon-To-Molding Compound Interface Adhesion Measurements. 2009 11th Electronics Packaging Technology Conference. Singapore: IEEE; 2009. pp. 357–362. DOI: 10.1109/EPTC.2009.5416523.
  • Loo, S.; Mhaisalkar, S.; Zhang, X.; Ng, H. S.; Tee, T. Y. Effects of Thermal, Moisture and Mechanical Loading Conditions on Interfacial Fracture Toughness Using Brazil-Nut Specimens; Singapore: IEEE, 2005; Vol. 2, pp. 7–.
  • Wang, J.-S.; Suo, Z. Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches. Acta. Metallurgica. Materialia. 1990, 38(7), 1279–1290. DOI: 10.1016/0956-7151(90)90200-Z.
  • Shaygi, M.; Wunderle, B.; Arnold, J.; Pflügler, N.; Pufall, R. Button Shear Fatigue Test: Fracture-Mechanical Interface Characterisation Under Periodic Subcritical Mechanical Loading; Lecco, Italy: IEEE, 2019; pp. 1–12.
  • Tay, A. A. O.; Phang, J. S.; Wong, E. H.; Ranjan, R. A Modified Button-Shear Method for Measuring Fracture Toughness of Polymer-Metal Interfaces in IC Packages (); 2003; pp. 1169. DOI: 10.1109/ECTC.2003.1216439.
  • Chen, J.; Bull, S. Approaches to Investigate Delamination and Interfacial Toughness in Coated Systems: An Overview. J. Phys. D. Appl. Phys. 2010, 44(3), 034001. DOI: 10.1088/0022-3727/44/3/034001.
  • Chen, J. Indentation-Based Methods to Assess Fracture Toughness for Thin Coatings. J. Phys. D. Appl. Phys. 2012, 45(20), 203001. DOI: 10.1088/0022-3727/45/20/203001.
  • Roshanghias, A.; Khatibi, G.; Pelzer, R.; Steinbrenner, J.; Bernardi, J. Cross-Sectional Nanoindentation (CSN) Studies on the Effect of Thickness on Adhesion Strength of Thin Films. J. Phys. D. Appl. Phys. 2014, 48(3), 035301. DOI: 10.1088/0022-3727/48/3/035301.
  • Bull, S.; Berasetegui, E. An Overview of the Potential of Quantitative Coating Adhesion Measurement by Scratch Testing. Tribol. Int. 2006, 39(2), 99–114. DOI: 10.1016/j.triboint.2005.04.013.
  • Moody, N. R.; Kennedy, M. S.; Bahr, D. F. Reliability of Materials in MEMS: Residual Stress and Adhesion in a Micro Power Generation System. Albuquerque, NM, and Livermore, CA, USA: Sandia National Laboratories (SNL), 2007.
  • Standards & Documents Search | JEDEC. https://www.jedec.org/standards-documents. (accessed Feb 7, 2024).
  • Luo, S.; Wong, C. P. Influence of Temperature and Humidity on Adhesion of Underfills for Flip Chip Packaging. IEEE Trans. Compon. Packag. Technol. 2005, 28(1), 88–94. DOI: 10.1109/TCAPT.2004.838872.
  • Oh, G.-H.; Joo, S.-J.; Jeong, J.-W.; Kim, H.-S. Effect of Plasma Treatment on Adhesion Strength and Moisture Absorption Characteristics Between Epoxy Molding Compound/Silicon Chip (EMC/Chip) Interface. Microelectron. Reliab. 2019, 92, 63–72. DOI: 10.1016/j.microrel.2018.11.004.
  • Lebbai, M.; Kim, J.-K.; Yuen, M. M. F. Effects of Moisture and Elevated Temperature on Reliability of Interfacial Adhesion in Plastic Packages. J. Elec. Materi. 2003, 32(6), 574–582. DOI: 10.1007/s11664-003-0144-9.
  • Kim, T.-S. Adhesion Measurement Methods for Thin Films in Microelectronics. J. Wel. Join. 2012, 30(3), 15–20. DOI: 10.5781/KWJS.2012.30.3.213.
  • Hwang, Y.-T.; Um, H.-J.; Yu, M.-H.; Lee, D.-W.; Lee, M.-J.; Kim, H.-S. Finite Element Analysis of Moisture Induced Thermo-Mechanical Delamination of Semiconductor Packages Considering in-Situ Moisture Desorption During Reflow Process. Microelectron. Reliab. 2021, 121, 114146. DOI: 10.1016/j.microrel.2021.114146.
  • Li, S.; Lin, J.; Min, J. Experimental Investigation and Molecular Simulation on the Chemical Bonding Between Laser-Treated Titanium Alloy Amorphous Surface and Epoxy Adhesive. J. Adhes. 2023, 1–20. DOI: 10.1080/00218464.2023.2277298.
  • Ortega-Iguña, M.; Akhavan-Safar, A.; Carbas, R. C. J.; Sánchez-Amaya, J. M.; Chludzinski, M.; da Silva, L. F. M. Use of Seawater to Improve the Static Strength and Fatigue Life of Bonded Coated Steel Joints. Polym. Degrad. Stab. 2022, 206, 110169. DOI: 10.1016/j.polymdegradstab.2022.110169.
  • Zhu, S.-W.; Shih, C.-P.; Chiu, T.-C.; Shen, G. S. Delamination Fracture Characteristics for Polyimide-Related Interfaces Under Fatigue Loadings. 2010 5th International Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, Taiwan: IEEE; 2010. pp. 1–4. DOI: 10.1109/IMPACT.2010.5699574.
  • Morais, P.; Akhavan-Safar, A.; Carbas, R.; Marques, E. Mode I Fatigue and Fracture Assessment of Bi-Material Interfaces to Enhance the Reliability of Semiconductors. Polymers. 2024, 16(4), 463. DOI: 10.3390/polym16040463.
  • Kwatra, A.; Samet, D.; Rambhatla, V. N. N. T.; Sitaraman, S. K. Effect of Temperature and Humidity Conditioning on Copper Leadframe/Mold Compound Interfacial Delamination. Microelectron. Reliab. 2020, 111, 113647. DOI: 10.1016/j.microrel.2020.113647.
  • Lassnig, A.; Putz, B.; Hirn, S.; Többens, D. M.; Mitterer, C.; Cordill, M. J. Adhesion Evaluation of Thin Films to Dielectrics in Multilayer Stacks: A Comparison of Four-Point Bending and Stressed Overlayer Technique. Mater. Des. 2021, 200, 109451. DOI: 10.1016/j.matdes.2021.109451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.