74
Views
0
CrossRef citations to date
0
Altmetric
Original research article

Characterization of lactic acid bacteria isolated from the gastrointestinal tract of scaptotrigona mexicana and scaptotrigona pectoralis stingless bees

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 21 Apr 2023, Accepted 29 Nov 2023, Published online: 19 Apr 2024

References

  • Ali, A. A. (2010). Beneficial Role of Lactic Acid Bacteria in Food Preservation and Human Health: A Review. Research Journal of Microbiology, 5, 1213–1221. https://doi.org/10.3923/jm.2010.1213.1221
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Amit-Romach, E., Sklan, D., & Uni, Z. (2004). Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Science, 83(7), 1093–1098. https://doi.org/10.1093/ps/83.7.1093
  • Andrade-Velásquez, A., Hernández Sánchez, H., Dorantes-Álvarez, L., Palmeros-Sánchez, B., Torres-Moreno, R., Hernández-Rodríguez, D., & Melgar-Lalanne, G. (2023). Honey characterization and identification of fructophilic lactic acid bacteria of fresh samples from Melipona beecheii, Scaptotrigona pectoralis, Plebeia llorentei, and Plebeia jatiformis hives. Frontiers in Sustainable Food Systems, 7, 1113920. https://doi.org/10.3389/fsufs.2023.1113920
  • Arrioja-Bretón, D., Mani-López, E., Palou, E., & López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control,.115, 107286. https://doi.org/10.1016/j.foodcont.2020.107286
  • Ávila, S., Beux, M. R., Ribani, R. H., & Zambiazi, R. C. (2018). Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends in Food Science & Technology, 81, 37–50. https://doi.org/10.1016/j.tifs.2018.09.002
  • Ayala, R. (1992). Revisión de las abejas sin aguijón de México. Folia Entomologica Mexicana, 106, 1–123.
  • Ayala, R., Gonzalez, V. H., & Engel, M. S. (2013). Mexican stingless bees (Hymenoptera: Apidae): Diversity, distribution, and indigenous knowledge. In: P. Vit, S. Pedro, D. Roubik (Eds.), Pot-Honey: A Legacy of Stingless Bees. Springer Science & Business Media. pp 135–152. https://doi.org/10.1007/978-1-4614-4960-7_9
  • Brown, W. J. (1988). National Committee for Clinical Laboratory Standards agar dilution susceptibility testing of anaerobic gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 32(3), 385–390. https://doi.org/10.1128/AAC.32.3.385
  • Budge, G. E., Adams, I., Thwaites, R., Pietravalle, S., Drew, G. C., Hurst, G. D. D., Tomkies, V., Boonham, N., & Brown, M. (2016). Identifying bacterial predictors of honey bee health. Journal of Invertebrate Pathology, 141, 41–44. https://doi.org/10.1016/j.jip.2016.11.003
  • Caesar, L., Cibulski, S. P., Canal, C. W., Blochtein, B., Sattler, A., & Haag, K. L. (2019). The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. The Journal of General Virology, 100(7), 1153–1164. https://doi.org/10.1099/jgv.0.001273
  • Cha, S., Ahn, B., & Kim, J. (2008). Korea Food Research Institute, assignee Weissella cibaria 148-2 lactic bacteria for functional healthy effect and Makgeolli containing the same. Korea patent KR.
  • Chand, D., Avinash, V. S., Yadav, Y., Pundle, A. V., Suresh, C. G., & Ramasamy, S. (2017). Molecular features of bile salt hydrolases and relevance in human health. Biochimica et Biophysica Acta. General Subjects, 1861(1 Pt A), 2981–2991. https://doi.org/10.1016/j.bbagen.2016.09.024
  • De Bruyne, K., Camu, N., De Vuyst, L., & Vandamme, P. (2010). Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 9), 1999–2005. https://doi.org/10.1099/ijs.0.019323-0
  • De Simone, N., Rocchetti, M. T., la Gatta, B., Spano, G., Drider, D., Capozzi, V., Russo, P., & Fiocco, D. (2022). Antimicrobial properties, functional characterisation and application of Fructobacillus fructosus and Lactiplantibacillus plantarum isolated from Artisanal Honey. Probiotics and Antimicrobial Proteins, 15(5), 1406–1423. https://doi.org/10.1007/s12602-022-09988-4
  • De Vuyst, L., Moreno, M. F., & Revets, H. (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. International Journal of Food Microbiology, 84(3), 299–318. https://doi.org/10.1016/S0168-1605(02)00425-7
  • Díaz, S., de Souza Urbano, S., Caesar, L., Blochtein, B., Sattler, A., Zuge, V., & Haag, K. L. (2017). Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. Journal of Invertebrate Pathology, 143, 35–39. https://doi.org/10.1016/j.jip.2016.11.012
  • Dobson, A., Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocin production: A probiotic trait? Applied and Environmental Microbiology, 78(1), 1–6. https://doi.org/10.1128/AEM.05576-11
  • Ebrahimi, M., Sadeghi, A., Rahimi, D., Purabdolah, H., & Shahryari, S. (2021). Postbiotic and anti-aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey. Probiotics and Antimicrobial Proteins, 13(2), 343–355. https://doi.org/10.1007/s12602-020-09697-w
  • Endo, A., & Salminen, S. (2013). Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36(6), 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  • Endo, A., Irisawa, T., Futagawa-Endo, Y., Sonomoto, K., Itoh, K., Takano, K., Okada, S., & Dicks, L. M. T. (2011). Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. International Journal of Systematic and Evolutionary Microbiology, 61(Pt 4), 898–902. https://doi.org/10.1099/ijs.0.023838-0
  • Evans, J. D., & Lopez, D. L. (2004). Bacterial probiotics induce an immune response in the honey bee. Journal of Economic Entomology, 97(3), 752–756. https://doi.org/10.1093/jee/97.3.752
  • Facchini, E., Bijma, P., Pagnacco, G., Rizzi, R., & Brascamp, E. W. (2019). Hygienic behaviour in honeybees: A comparison of two recording methods and estimation of genetic parameters. Apidologie, 50(2), 163–172. https://doi.org/10.1007/s13592-018-0627-6
  • Fhoula, I., Boumaiza, M., Tayh, G., Rehaiem, A., Klibi, N., & Ouzari, I. H. (2022). Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Science & Nutrition, 10(9), 2896–2910. https://doi.org/10.1002/fsn3.2885
  • Forsgren, E., Olofsson, T. C., Vásquez, A., & Fries, I. (2010). Novel lactic acid bacteria inhibiting Paenibacillus larvae in honeybee larvae. Apidologie, 41(1), 99–108. https://doi.org/10.1051/apido/2009065
  • Gómez, N. C., Ramiro, J. M. P., Quecan, B. X. V., & de Melo Franco, B. D. G. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 7, 863. https://doi.org/10.3389/fmicb.2016.00863
  • Gupta, V., & Garg, R. (2009). Probiotics. Indian Journal of Medical Microbiology, 27(3), 202–209. https://doi.org/10.4103/0255-0857.53201
  • Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.
  • Heard, T. A. (1999). The role of stingless bees in crop pollination. Annual Review of Entomology, 44(1), 183–206. https://doi.org/10.1146/annurev.ento.44.1.183
  • Hossain, T. J., Nafiz, I. H., Mozumder, H. A., Ali, F., Rahman, N., Khan, M. (2022). Antipathogenic action and antibiotic sensitivity pattern of the borhani-associated lactic acid bacterium Weissella confuse, LAB-11. Available at SSRN: https://ssrn.com/abstract=4161742. https://doi.org/10.2139/ssrn.4161742
  • Hrncir, M., Jarau, S., & Barth, F. G. (2016). Stingless bees (Meliponini): senses and behavior. Journal of Comparative Physiology A, 202(9-10), 597–601. https://doi.org/10.1007/s00359-016-1117-9
  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  • Ispirli, H., & Dertli, E. (2021). Detection of fructophilic lactic acid bacteria (FLAB) in bee bread and bee pollen samples and determination of their functional roles. Journal of Food Processing and Preservation. 45(5), e15414. https://doi.org/10.1111/jfpp.15414
  • Jawan, R., Kasimin, M. E., Jalal, S. N., Faik, A. M., Abbasiliasi, S., & Ariff, A. (2019). Isolation, characterisation and in vitro evaluation of bacteriocins-producing lactic acid bacteria from fermented products of Northern Borneo for their beneficial roles in food industry. Journal of Physics: Conference Series, 1358(1), 012020. https://doi.org/10.1088/1742-6596/1358/1/012020
  • Khalafalla, G. M., Sadik, M. W., Ali, M. A., & Mohamed, R. S. (2019). Novel potential probiotics from gut microbiota of honeybees (Apis mellifera) in clover feeding season in Egypt. Plant Archives, 19(2), 3381–3389.
  • Kim, H. Y., Bae, W. Y., Yu, H. S., Chang, K. H., Hong, Y. H., Lee, N. K., & Paik, H. D. (2020). Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Science and Biotechnology, 29(4), 569–578. https://doi.org/10.1007/s10068-019-00690-w
  • Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings Biological Sciences, 274(1608), 303–313. https://doi.org/10.1016/j.cois.2018.02.011
  • Klepzig, K. D., Adams, A. S., Handelsman, J., & Raffa, K. F. (2009). Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology, 38(1), 67–77. https://doi.org/10.1603/022.038.0109
  • Kwak, S. H., Cho, Y. M., Noh, G. M., & Om, A. S. (2014). Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). Journal of Cancer Prevention, 19(4), 253–258. https://doi.org/10.15430/JCP.2014.19.4.253
  • Lakra, A. K., Domdi, L., Hanjon, G., Tilwani, Y. M., & Arul, V. (2020). Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT, 125, 109261. https://doi.org/10.1016/j.lwt.2020.109261
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Lashani, E., Davoodabadi, A., & Dallal, M. M. S. (2020). Some probiotic properties of Lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Veterinary Research Forum. 11, (2), p. 121 Faculty of Veterinary Medicine, Urmia University. https://doi.org/10.30466/vrf.2018.90418.2188
  • Lee, K. W., Park, J. Y., Jeong, H. R., Heo, H. J., Han, N. S., & Kim, J. H. (2012). Probiotic properties of Weissella strains isolated from human faeces. Anaerobe, 18(1), 96–102. https://doi.org/10.1016/j.anaerobe.2011.12.015
  • Leyva, M. K. A. (2017). Estudio de las propiedades físicas y químicas, actividad antioxidante y antimicrobiana de la miel líquida y microencapsulada de Scaptotrigona pectoralis [Dissertation]. Instituto Tecnológico de Mérida.
  • Lim, S. M., & Im, D. S. (2009). Screening and characterization of probiotic LAB isolated from Korean-fermented foods. Journal of Microbiology and Biotechnology, 19(2), 178–186. https://doi.org/10.4014/jmb.0804.269
  • Liu, Y., Wang, R., Cao, Y., Chen, C., Bai, F., Xu, T., Zhao, R., Zhang, X., Zhao, J., & Cheng, C. (2016). Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5 L8 isolated from the seeds of maize (Zea mays L., Jingke 968). Annals of Microbiology, 66(2), 653–660. https://doi.org/10.1007/s13213-015-1150-x
  • Lubinsky, P., van Dam, M., & van Dam, A. (2006). Pollination of Vanilla and evolution in Orchidaceae. Orchids, 75, 926–929.
  • Mani‐López, E., Arrioja‐Bretón, D., & López‐Malo, A. (2022). The impacts of antimicrobial and antifungal activity of cell‐free supernatants from lactic acid bacteria in vitro and foods. Comprehensive Reviews in Food Science and Food Safety, 21(1), 604–641. https://doi.org/10.1111/1541-4337.12872
  • Maruščáková, I. C., Schusterová, P., Bielik, B., Toporčák, J., Bíliková, K., & Mudroňová, D. (2020). Effect of application of probiotic pollen suspension on immune response and gut microbiota of honey bees (Apis mellifera). Probiotics and Antimicrobial Proteins, 12(3), 929–936. https://doi.org/10.1007/s12602-019-09626-6
  • Menezes, C., Vollet-Neto, A., Contrera, F. A. F. L., Venturieri, G. C., & Imperatriz-Fonseca, V. L. (2013). The role of useful microorganisms to stingless bees and stingless beekeeping. In: P. Vit, S. Pedro, D. Roubik (Eds.), Pot-Honey: A Legacy of Stingless Bees (pp 153–171). Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-4960-7_10
  • Michener, C. D. (2007). The bees of the world. In C. D. Michener (Ed.), The John Hopkins (2nd ed., pp. 953). University Press.
  • Mohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F., Singh, V., Parkash, O., & Yadav, H. (2008). Molecular approaches for identification and characterization of lactic acid bacteria. Journal of Digestive Diseases, 9(4), 190–198. https://doi.org/10.1111/j.1751-2980.2008.00345.x
  • Moon, Y. J., Soh, J. R., Yu, J. J., Sohn, H. S., Cha, Y. S., & Oh, S. H. (2012). Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1‐6 isolated from Kimchi on differentiating adipocyte. Journal of Applied Microbiology, 113(3), 652–658. https://doi.org/10.1111/j.13652672.2012.05348.x
  • Moraes, P. M., Perin, L. M., Silva-Júnior, A., & Nero, L. A. (2013). Comparison of phenotypic and molecular tests to identify lactic acid bacteria. Brazilian Journal of Microbiology, 44(1), 109–112. https://doi.org/10.1590/S1517-83822013000100015
  • Morais, P. B., Calaça, P. S. S. T., & Rosa, C. A. (2012). Microorganisms associated with stingless bees. In: P. Vit, S. Pedro, & D. Roubik (Eds.), Pot-Honey: A Legacy of Stingless Bees (pp. 173–186). Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-4960-7_7
  • Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005). The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics, 36(1), 563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626
  • Odonkor, S. T., & Addo, K. K. (2011). Bacteria resistance to antibiotics: Recent trends and challenges. International Journal of Biological & Medical Research, 2(4), 1204–1210.
  • Pachla, A., Ptaszyńska, A. A., Wicha, M., Kunat, M., Wydrych, J., Oleńska, E., & Małek, W. (2021). Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi Journal of Biological Sciences, 28(3), 1890–1899. https://doi.org/10.1016/j.sjbs.2020.12.040
  • Pachla, A., Wicha, M., Ptaszyńska, A. A., Borsuk, G., Trokenheim, ŁŁ., & Małek, W. (2018). The molecular and phenotypic characterization of fructophilic lactic acid bacteria isolated from the guts of Apis mellifera L. derived from a Polish apiary. Journal of Applied Genetics, 59(4), 503–514. https://doi.org/10.1007/s13353-018-0467-0
  • Pfeiler, E. A., & Klaenhammer, T. R. (2007). The genomics of lactic acid bacteria. Trends in Microbiology, 15(12), 546–553. https://doi.org/10.1016/j.tim.2007.09.010
  • Piccart, K., Vásquez, A., Piepers, S., De Vliegher, S., & Olofsson, T. C. (2016). Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. Journal of Dairy Science, 99(4), 2940–2944. https://doi.org/10.3168/jds.2015-10208
  • Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083
  • Quinto, E. J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., & Girbés, T. (2014). Probiotic lactic acid bacteria: A review. Food and Nutrition Sciences, 05(18), 1765–1775. https://doi.org/10.4236/fns.2014.518190
  • Reiner, K. (2010). Catalse test protocol (pp. 1–6). American Society for Microbiology.
  • Rokop, Z. P., Horton, M. A., & Newton, I. L. G. (2015). Interactions between cooccurring lactic acid bacteria in honeybee hives. Applied and Environmental Microbiology, 81(20), 7261–7270. https://doi.org/10.1128/AEM.0125915
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396. https://doi.org/10.3389/fmicb.2013.00396
  • Sanders, M. E., Benson, A., Lebeer, S., Merenstein, D. J., & Klaenhammer, T. R. (2018). Shared mechanisms among probiotic taxa: Implications for general probiotic claims. Current Opinion in Biotechnology, 49, 207–216. https://doi.org/10.1016/j.copbio.2017.09.007
  • Sandes, S., Figueiredo, N., Pedroso, S., Sant’Anna, F., Acurcio, L., Abatemarco Junior, M., Barros, P., Oliveira, F., Cardoso, V., Generoso, S., Caliari, M., Nicoli, J., Neumann, E., & Nunes, Á. (2020). Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Research International, 137, 109741. https://doi.org/10.1016/j.foodres.2020.109741
  • Sharma, S., Kandasamy, S., Kavitake, D., & Shetty, P. H. (2018). Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT, 97, 53–60. https://doi.org/10.1016/j.lwt.2018.06.033
  • Simsek, D., Kiymaci, M. E., Tok, K. C., Gumustas, M., & Altanlar, N. (2022). Investigation of the probiotic and metabolic potential of Fructobacillus tropaeoli and Apilactobacillus kunkeei from apiaries. Archives of Microbiology, 204(7), 432. https://doi.org/10.1007/s00203-022-03000-x
  • Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S., & Hofstede, F. E. (2006). Stingless bees in applied pollination: Practice and perspectives. Apidologie, 37(2), 293–315. https://doi.org/10.1051/apido:2006022
  • Suyabatmaz, Ş., Alpay Karaoğlu, Ş., Akpınar, R., Bozdeveci, A., Bıyık, S., Güler, A., & Kaya, S. (2023). Inhibitive and prophylactic efficacy of lactic acid bacteria from Apis mellifera (Hymenoptera: Apidae) in combating Paenibacillus infections. Journal of Apicultural Research, 1–12. https://doi.org/10.1080/00218839.2023.2245211
  • Syed Yaacob, S. N., Huyop, F., Kamarulzaman Raja, I. R., & Wahab, R. A. (2018). Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. Journal of Apicultural Research, 57(3), 395–405. https://doi.org/10.1080/00218839.2018.1428047
  • Teixeira, É. W., Ferreira, E. A., da Luz, C. F. P., Martins, M. F., Ramos, T. A., & Lourenço, A. P. (2020). European Foulbrood in stingless bees (Apidae: Meliponini) in Brazil: Old disease, renewed threat. Journal of Invertebrate Pathology, 172, 107357. https://doi.org/10.1016/j.jip.2020.107357
  • Tlak Gajger, I., Nejedli, S., & Cvetnić, L. (2023). Influence of probiotic feed supplement on Nosema spp. infection level and the gut microbiota of adult honeybees (Apis mellifera L.). Microorganisms, 11(3), 610. https://doi.org/10.3390/microorganisms11030610
  • Torres-Moreno, R., Hemández-Sánchez Humberto, S., Méndez-Tenorio, A., Palmeros-Sánchez, B., & Melgar-Lalanne, G. (2021). Characterization and identification of lactic acid bacteria from Mexican stingless bees (Apidae: Meliponini). IOP Conference Series, 858(1), 012010. https://doi.org/10.1088/1755-1315/858/1/012010
  • Toufailia, H., Alves, D. A., Bento, J. M. S., Marchini, L. C., & Ratnieks, F. L. W. (2016). Hygienic behaviour in Brazilian stingless bees. Biology Open, 5(11), 1712–1718. https://doi.org/10.1242/bio.018549
  • Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Correction: Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLOS One,.7(7), 1–9. https://doi.org/10.1371/annotation/3ac2b867-c013-4504-9e06-bebf3fa039d1
  • Wang, W., Liu, W., & Chu, W. (2020). Isolation and preliminary screening of potentially probiotic Weissella confusa strains from healthy human feces by culturomics. Microbial Pathogenesis, 147, 104356. https://doi.org/10.1016/j.micpath.104356
  • Yeu, J. E., Lee, H. G., Park, G. Y., Lee, J., & Kang, M. S. (2021). Antimicrobial and antibiofilm activities of Weissella cibaria against pathogens of upper respiratory tract infections. Microorganisms, 9(6), 1181. https://doi.org/10.3390/microorganisms9061181
  • Zeid, A. A. A., Khattaby, A. M., El-Khair, I. A. A., & Gouda, H. I. (2022). Detection bioactive metabolites of Fructobacillus fructosus Strain HI-1 isolated from honey bee’s digestive tract against Paenibacillus larvae. Probiotics and Antimicrobial Proteins, 14(3), 476–485. https://doi.org/10.1007/s12602-021-09812-5
  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
  • Zulkhairi Amin, F. A., Sabri, S., Ismail, M., Chan, K. W., Ismail, N., Mohd Esa, N., Mohd Lila, M. A., & Zawawi, N. (2019). Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. International Journal of Environmental Research and Public Health, 17(1), 278. https://doi.org/10.3390/ijerph17010278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.