84
Views
0
CrossRef citations to date
0
Altmetric
Original research article

Intestinal microbial diversity in domestic honey bees and evaluation of their probiotic properties

, , , , , ORCID Icon & ORCID Icon show all
Received 23 Aug 2022, Accepted 04 Dec 2023, Published online: 26 Apr 2024

References

  • Alippi, A. M. (2000). Is Terramycin® losing its effectiveness against AFB. Bee Biz, 11, 27–29.
  • Anderson, K. E., Ricigliano, V. A., Mott, B. M., Copeland, D. C., Floyd, A. S., & Maes, P. (2018). The queen’s gut refines with age: Longevity phenotypes in a social insect model. Microbiome, 6(1), 108. https://doi.org/10.1186/s40168-018-0489-1
  • Ansari, M., Al-Ghamdi, A., Nuru, A., Ahmed, A., Ayaad, T., Khan, K., & Al-Waili, N. (2017). Diagnosis and molecular detection of Paenibacillus larvae, the causative agent of American foulbrood in honey bees in Saudi Arabia. International Journal of Tropical Insect Science, 37(03), 137–148. https://doi.org/10.1017/S1742758417000133
  • Audisio, M. C., Torres, M. J., Sabaté, D. C., Ibarguren, C., & Apella, M. C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiological Research, 166(1), 1–13. https://doi.org/10.1016/j.micres.2010.01.003
  • Batra, S. W. T. (1995). Bees and pollination in our changing environment. Apidologie, 26(5), 361–370. https://doi.org/10.1051/apido:19950501
  • Batty, E., Jensen, K., & Freemont, P. (2009). PML nuclear bodies and their spatial relationships in the mammalian cell nucleus. Frontiers in Bioscience, 14(3), 1182–1196. https://doi.org/10.2741/3302
  • Bevilacqua, E., Gomes, S. Z., Lorenzon, A. R., Hoshida, M. S., & Amarante-Paffaro, A. M. (2012). NADPH oxidase as an important source of reactive oxygen species at the mouse maternal–fetal interface: Putative biological roles. Reproductive Biomedicine Online, 25(1), 31–43. https://doi.org/10.1016/j.rbmo.2012.03.016
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Burritt, N. L., Foss, N. J., Neeno-Eckwall, E. C., Church, J. O., Hilger, A. M., Hildebrand, J. A., Warshauer, D. M., Perna, N. T., & Burritt, J. B. (2016). Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain sicaria. PLOS One, 11(12), e0167752. https://doi.org/10.1371/journal.pone.0167752
  • Campos, M. G., Bogdanov, S., de Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C., & Ferreira, F. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47(2), 154–161. https://doi.org/10.1080/00218839.2008.11101443
  • Castelli, L., Branchiccela, B., Garrido, M., Invernizzi, C., Porrini, M., Romero, H., Santos, E., Zunino, P., & Antúnez, K. (2020). Impact of nutritional stress on honey bee gut microbiota, immunity, and Nosema ceranae infection. Microbial Ecology, 80(4), 908–919. https://doi.org/10.1007/s00248-020-01538-1
  • Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., Quan, P.-L., Briese, T., Hornig, M., Geiser, D. M., Martinson, V., vanEngelsdorp, D., Kalkstein, A. L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S. K., Simons, J. F., … Lipkin, W. I. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283–287. https://doi.org/10.1126/science.1146498
  • Crotti, E., Sansonno, L., Prosdocimi, E. M., Vacchini, V., Hamdi, C., Cherif, A., Gonella, E., Marzorati, M., & Balloi, A. (2013). Microbial symbionts of honey bees: A promising tool to improve honey bee health. New Biotechnology, 30(6), 716–722. https://doi.org/10.1016/j.nbt.2013.05.004
  • Dedej, S., & Delaplane, K. S. (2003). Honey bee (Hymenoptera: Apidae) pollination of rabbiteye blueberry Vaccinium ashei var. ‘Climax’is pollinator density-dependent. Journal of Economic Entomology, 96(4), 1215–1220. https://doi.org/10.1093/jee/96.4.1215
  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: Nonpathogenic interactions. Annual Review of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  • Edwards, C. G., Haag, K. M., Collins, M. D., Hutson, R. A., & Huang, Y. C. (1998). Lactobacillus kunkeei sp. nov.: A spoilage organism associated with grape juice fermentations. Journal of Applied Microbiology, 84(5), 698–702. https://doi.org/10.1046/j.1365-2672.1998.00399.x
  • Elzeini, H. M., Ali, A. R. A. A., Nasr, N. F., Elenany, Y. E., & Hassan, A. A. M. (2021). Isolation and identification of lactic acid bacteria from the intestinal tracts of honey bees, Apis mellifera L., in Egypt. Journal of Apicultural Research, 60(2), 349–357. https://doi.org/10.1080/00218839.2020.1746019
  • Endo, A., & Salminen, S. (2013). Honey bees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiology, 36(6), 444–448. https://doi.org/10.1016/j.syapm.2013.06.002
  • Engel, P., & Moran, N. A. (2013). The gut microbiota of insects diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
  • Evans, J. D., & Armstrong, T. N. (2006). Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecology, 6(1), 4. https://doi.org/10.1186/1472-6785-6-4
  • Fleming, J. C., Schmehl, D. R., & Ellis, J. D. (2015). Characterizing the impact of commercial pollen substitute diets on the level of Nosema spp. in honey bees (Apis mellifera L.). PLOS One, 10(7), e0132014. https://doi.org/10.1371/journal.pone.0132014
  • Genersch, E., Forsgren, E., Pentikäinen, J., Ashiralieva, A., Rauch, S., Kilwinski, J., & Fries, I. (2006). Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 3), 501–511. https://doi.org/10.1099/ijs.0.63928-0
  • Ghosh, S., & Jung, C. (2017). Nutritional value of bee-collected pollens of hardy kiwi, Actinidia arguta (Actinidiaceae) and oak, Quercus sp. (Fagaceae). Journal of Asia-Pacific Entomology, 20(1), 245–251. https://doi.org/10.1016/j.aspen.2017.01.009
  • Gilliam, M., & Morton, H. L. (1978). Bacteria belonging to the genus Bacillus isolated from honey bees, Apis mellifera, fed 2, 4-D and antibiotics. Apidologie, 9(3), 213–222. https://doi.org/10.1051/apido:19780305
  • Gilliam, M., & Prest, D. B. (1987). Microbiology of feces of the larval buhoney bee, Apis mellifera. Journal of Invertebrate Pathology, 49(1), 70–75. https://doi.org/10.1016/0022-2011(87)90127-3
  • Gilliam, M., Lorenz, B. J., Wenner, A. M., & Thorp, R. W. (1997). Occurrence and distribution of Ascosphaera apis in North America: Chalkbrood in feral honey bee colonies that had been in isolation on Santa Cruz Island, California for over 110 years. Apidologie, 28(6), 329–338. https://doi.org/10.1051/apido:19970601
  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. https://doi.org/10.1126/science.1255957
  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95–98.
  • Hendricks, C. W., Doyle, J. D., & Hugley, B. (1995). A new solid medium for enumerating cellulose-utilizing bacteria in soil. Applied and Environmental Microbiology, 61(5), 2016–2019. https://doi.org/10.1128/aem.61.5.2016-2019.1995
  • Hmidet, N., Ali, N. E. H., Haddar, A., Kanoun, S., Alya, S. K., & Nasri, M. (2009). Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47(1–3), 71–79. https://doi.org/10.1016/j.bej.2009.07.005
  • Horton, M. A., Oliver, R., & Newton, I. L. (2015). No apparent correlation between honey bee forager gut microbiota and honey production. PeerJ. 3, e1329. https://doi.org/10.7717/peerj.1329
  • Inglis, G. D., Yanke, L. J., & Goettel, M. S. (1998). Anaerobic bacteria isolated from the alimentary canals of alfalfa leafcutting bee larvae. Apidologie, 29(4), 327–332. https://doi.org/10.1051/apido:19980403
  • Jeyaprakash, A., Hoy, M. A., & Allsopp, M. H. (2003). Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal of Invertebrate Pathology, 84(2), 96–103. https://doi.org/10.1016/j.jip.2003.08.007
  • Kwong, W. K., & Moran, N. A. (2016). Gut microbial communities of social bees. Nature Reviews. Microbiology, 14(6), 374–384. https://doi.org/10.1038/nrmicro.2016.43
  • Kim, H., Lee, M-l., Mustafa, B., Han, G., Lee, S., Hwang, J., & Wook, H. (2021). Nutritional compositional characterization on five diets for development of pollen substitute diet. Journal of Apiculture, 36(2), 63–69. https://doi.org/10.17519/apiculture.2021.06.36.2.63
  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambrige University Press.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kwong, W. K., Engel, P., Koch, H., & Moran, N. A. (2014). Genomics and host specialization of honey bee and bumble bee gut symbionts. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11509–11514. https://doi.org/10.1073/pnas.1405838111
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackbrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–117). Wiley.
  • Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R., & Newton, I. L. (2015). Saccharide breakdown and fermentation by the honey bee gut microbiome. Environmental Microbiology, 17(3), 796–815. https://doi.org/10.1111/1462-2920.12526
  • Linjordet, M. S. (2016). A comparative analysis of lactic acid bacteria isolated from honey bee gut and flowers, with focus on phylogeny and plasmid profiling [Master’s thesis]. Norwegian University of Life Sciences, Ås.
  • Lombogia, C. A., Tulung, M., Posangi, J., & Tallei, T. E. (2020). Bacterial composition, community structure, and diversity in Apis nigrocincta gut. International Journal of Microbiology, 2020, 6906921–6906928. https://doi.org/10.1155/2020/6906921
  • Martinson, V. G., Danforth, B. N., Minckley, R. L., Rueppell, O., Tingek, S., & Moran, N. A. (2011). A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20(3), 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x
  • Martirani, L., Varcamonti, M., Naclerio, G., & De Felice, M. (2002). Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microbial Cell Factories, 1(1), 1–5. https://doi.org/10.1186/1475-2859-1-1
  • Vanengelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103(Suppl 1), S80–S95. https://doi.org/10.1016/j.jip.2009.06.011
  • Miller, G. L., Blum, R., Glennon, W. E., & Burton, A. L. (1960). Measurement of carboxymethylcellulase activity. Analytical Biochemistry, 1(2), 127–132. https://doi.org/10.1016/0003-2697(60)90004-X
  • Mollet, J. C., Leroux, C., Dardelle, F., & Lehner, A. (2013). Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants, 2(1), 107–147. https://doi.org/10.3390/plants2010107
  • Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 22–28. https://doi.org/10.1016/j.cois.2015.04.003
  • Moran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLOS One, 7(4), e36393. https://doi.org/10.1371/journal.pone.0036393
  • Mutinelli, F. (2003). European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee diseases. Apiacta, 38, 156–168.
  • Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nature Reviews. Immunology, 13(5), 349–361. https://doi.org/10.1038/nri3423
  • Naug, D. (2009). Nutritional stress due to habitat loss may explain recent honey bee colony collapses. Biological Conservation, 142(10), 2369–2372. https://doi.org/10.1016/j.biocon.2009.04.007
  • Olofsson, T. C., Butler, È., Markowicz, P., Lindholm, C., Larsson, L., & Vásquez, A. (2016). Lactic acid bacterial symbionts in honey bees–an unknown key to honey’s antimicrobial and therapeutic activities. International Wound Journal, 13(5), 668–679. https://doi.org/10.1111/iwj.12345
  • Paris, L., Roussel, M., Pereira, B., Delbac, F., & Diogon, M. (2017). Disruption of oxidative balance in the gut of the western honey bee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microbial Biotechnology, 10(6), 1702–1717. https://doi.org/10.1111/1751-7915.12772
  • Patel, A. K., Ahire, J. J., Pawar, S. P., Chaudhari, B. L., & Chincholkar, S. B. (2009). Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Research International, 42(4), 505–510. https://doi.org/10.1016/j.foodres.2009.01.013
  • Rani, R. P., Anandharaj, M., Sabhapathy, P., & Ravindran, A. D. (2017). Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. International Journal of Biological Macromolecules, 96, 1–10. https://doi.org/10.1016/j.ijbiomac.2016.11.122
  • Raymann, K., & Moran, N. A. (2018). The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26, 97–104. https://doi.org/10.1016/j.cois.2018.02.012
  • Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honey bees. PLOS Biology, 15(3), e2001861. https://doi.org/10.1371/journal.pbio.2001861
  • Ribière, C., Hegarty, C., Stephenson, H., Whelan, P., & O'Toole, P. W. (2019). Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microbial Ecology, 78(1), 195–205. https://doi.org/10.1007/s00248-018-1287-9
  • Roh, S. W., Sung, Y., Nam, Y.-D., Chang, H.-W., Kim, K.-H., Yoon, J.-H., Jeon, C. O., Oh, H.-M., & Bae, J.-W. (2008). Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. Journal of Microbiology, 46(1), 40–44. https://doi.org/10.1007/s12275-007-0239-8
  • Rousseau, M., Tysset, C., & Durand, C. (1969). Presence of streptococci of the Lancefield D group in healthy working bees (Alpis mellifica L.). Interpretation of their presence in alimentary bacteriology. Bulletin de L'Academie Veterinaire de France, 42(5), 173–186.
  • Saccà, M. L., & Lodesani, M. (2020). Isolation of bacterial microbiota associated to honey bees and evaluation of potential biocontrol agents of Varroa destructor. Beneficial Microbes, 11(7), 641–654. https://doi.org/10.3920/BM2019.0164
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.
  • Seo, D. H., Cho, E. S., Hwang, C. Y., Yoon, D. J., Chun, J., Jang, Y., Nam, Y. D., Park, S. R., Lim, S. I., Kim, J. H., & Seo, M. J. (2019). Cultivable microbial diversity in domestic bentonites and their hydrolytic enzyme production. Microbiology and Biotechnology Letters, 47(1), 125–131. https://doi.org/10.4014/mbl.1808.08011
  • Shuwen, Z., Lu, L., Yanling, S., Hongjuan, L., Qi, S., Xiao, L., & Jiaping, L. (2011). Antioxidative activity of lactic acid bacteria in yogurt. African Journal of Microbiology Research, 5(29), 5194–5201.
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: Lactic acid bacteria and honey bees. PLOS One, 7(3), e33188. https://doi.org/10.1371/journal.pone.0033188
  • Vásquez, A., Olofsson, T. C., & Sammataro, D. (2009). A scientific note on the lactic acid bacterial flora in honey bees in the USA–a comparison with bees from Sweden. Apidologie, 40(1), 26–28. https://doi.org/10.1051/apido:2008063
  • Vojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial gut diversity of Africanized and European honey bee larval instars. PLOS One, 8(8), e72106. https://doi.org/10.1371/journal.pone.0072106
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755
  • Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honey bee, Apis cerana japonica, and their antagonistic effect against ilarvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102(2), 91–96. https://doi.org/10.1016/j.jip.2009.07.005
  • Zendo, T., Ohashi, C., Maeno, S., Piao, X., Salminen, S., Sonomoto, K., & Endo, A. (2020). Kunkecin A, a new nisin variant bacteriocin produced by the fructophilic lactic acid bacterium, Apilactobacillus kunkeei FF30-6 isolated from honey bees. Frontiers in Microbiology, 11, 571903. https://doi.org/10.3389/fmicb.2020.571903
  • Zhao, W., Zhang, J., Jiang, Y. Y., Zhao, X., Hao, X. N., Li, L., & Yang, Z. N. (2018). Characterization and antioxidant activity of the exopolysaccharide produced by Bacillus amyloliquefaciens GSBa-1. Journal of Microbiology and Biotechnology, 28(8), 1282–1292. https://doi.org/10.4014/jmb.1801.01012
  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Ganzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.