29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gamma Ray Induced Changes in Polycarbonate/Poly(Methyl Methacrylate)/Polystyrene Blend Films: Linear and Nonlinear Optical Properties

, &
Received 15 Apr 2024, Accepted 23 Apr 2024, Published online: 07 May 2024

References

  • Nouh, S. A.; Benthami, K.; Abutalib, M. M. Modification of Structural and Optical Properties of Polyvinyl Alcohol/Polyethylene Glycol Thin Film by Laser Irradiation. Radiat. Eff. Defects Solids 2016, 171, 87–95. DOI: 10.1080/10420150.2015.1135153.
  • Nouh, S. A.; Benthami, K.; Abou Elfadl, A.; El-Nabarawy, H. A. Modification Induced by Gamma Irradiation in Polystyrene/Poly(Methyl Methacrylate) Blends. Int. Polym. Process. 2017, 32, 253–259. DOI: 10.3139/217.3342.
  • Peesan, M.; Supaphol, P.; Rujiravanit, R. Effect of Casting Solvent on Characteristics of Hexanoyl Chitosan/Polylactide Blend Films. J. Appl. Polym. Sci. 2007, 105, 1844–1852. DOI: 10.1002/app.26341.
  • Rajulu, A. V.; Reddy, R. L.; Raghavendra, S. M.; Ahmed, S. A. Miscibility of PVC/PMMA Blend by the Ultrasonic and Refractive Index Method. Eur. Polym. J. 1999, 35, 1183–1186. DOI: 10.1016/S0014-3057(98)00078-0.
  • Selvakumar, M.; Bhat, D. Miscibility of Poly(Methylmethacrelate) and Cellulose Acetate Butyrate Blends in Dimethyl Formamide. Indian J. Chem. Technol. 2008, 15, 547–554.
  • Nouh, S. A.; Benthami, K.; Mahrous, E. M.; El-Shamy, N. T.; Barakat, M. ME. Optical Investigation of the Effect of Laser Radiation on Lignosulfonate Polyvinyl Alcohol/Nickel Oxide Nanocomposite Membrane. J. Laser Appl. 2023, 35, 022023. DOI: 10.2351/7.0000977.
  • Nouh, S. A.; Benthami, K.; Abbady, G.; Mahrous, E. M.; Barakat, M. M. E. Optical and Color Investigation of the Effect of Laser Radiation on Polyaniline/Polyvinyl Pyrrolidone/Zinc Sulfide Nanocomposite Films. J. Macromol. Sci. Part B, Phys 2023, 62, 1–18. DOI: 10.1080/00222348.2023.2284565.
  • Nouh, S. A.; Mahrous, E. M.; AlSomali, F.; Yajzey, R.; Benthami, K.; Abbady, G. Optical and Color Modification in Polycarbonate/ZnS-NiO Nanocomposite Films Due to Laser Exposure. J. Russ. Laser Res. 2023, 44, 597–608. DOI: 10.1007/s10946-023-10168-0.
  • Tommalieh, M. J.; Barakat, M. M. E.; Bahareth, R. A.; Mahrous, E. M.; Saad, D.; Nouh, S. A. Thermal, Optical, and Color Modification in Makrofol VLG 7-1 Nuclear Track Detector Due to Gamma Irradiation. J. Macromol. Sci. B, Physics 2022, 61, 479–493. DOI: 10.1080/00222348.2022.2052456.
  • Singh, N. L.; Qureshi, A.; Singh, F.; Avasthi, D. K. Modifications of Polycarbonate Induced by Swift Heavy Ions. Mater. Sci. Eng. A 2007, 457, 195–198. DOI: 10.1016/j.msea.2006.12.008.
  • Nouh, S. A.; Amer, H.; Remon, S. W. Effect of Neutron Dose on the Structural Properties of Makrofol Polycarbonate. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 1129–1134. DOI: 10.1016/j.nimb.2009.02.049.
  • Al-Amri, A.; El Ghazaly, M.; Abdel-Aal, M. S. On Induced-Modifications in Optical Properties of Makrofol_ DE 1-1 SSNTD by UVB and UVA. Results Phys. 2017, 7, 1361–1366. DOI: 10.1016/j.rinp.2017.03.024.
  • Bahareth, R. A.; Barakat, M. M. E.; Alhodaib, A.; Aldawood, S.; Nouh, S. A. Tailoring the Optical Properties of PC/ZnS Nanocomposite by Gamma Radiation. Eur. Phys. J. Appl. Phys. 2021, 94, 20402. DOI: 10.1051/epjap/2021210053.
  • Wu, W.; Ouyang, Q.; He, L.; Huang, Q. Optical and Thermal Properties of Polymethyl Methacrylate (PMMA) Bearing Phenyl and Adamantyl Substituents. Colloids Surf. A: Physicochem. Eng. Asp 2022, 653, 130018. DOI: 10.1016/j.colsurfa.2022.130018.
  • Sengwa, R. J.; Dhatarwal, P. Polymer Nanocomposites Comprising PMMA Matrix and ZnO, SnO2, and TiO2 Nanofillers: A Comparative Study of Structural, Optical, and Dielectric Properties for Multifunctional Technological Applications. Opt. Mater. 2021, 113, 110837. DOI: 10.1016/j.optmat.2021.110837.
  • Choudhary, S. Effects of Amorphous Silica Nanoparticles and Polymer Blend Compositions on the Structural, Thermal and Dielectric Properties of PEO–PMMA Blend Based Polymer Nanocomposites. J. Polym. Res. 2018, 25, 1–21. DOI: 10.1007/s10965-018-1510-x.
  • Sengwa, R. J.; Kumar, N.; Saraswat, M. Morphological, Structural, Optical, Broadband Frequency Range Dielectric and Electrical Properties of PVDF/PMMA/BaTiO3 Nanocomposites for Futuristic Microelectronic and Optoelectronic Technologies. Mater. Today Commun. 2023, 35, 105625. DOI: 10.1016/j.mtcomm.2023.105625.
  • Sangawar, V. S.; Golchha, M. C. Evolution of the Optical Properties of Polystyrene Thin Films Filled with Zinc Oxide Nanoparticles. Int. J. Sci. Eng. Res 2013, 4, 2700–2705.
  • Nouh, S. A.; Radwan, Y.; Elfiky, D.; Abutalib, M.; Bahareth, R. A.; Hegazy, T. M.; Fouad, S. Structure, Thermal, Optical and Electrical Investigation of the Effect of Heavy Highly Energetic Ions Irradiations in Bayfol DPF 5023 Nuclear Track Detector. Radiat. Phys. Chem. 2014, 97, 68–74. DOI: 10.1016/j.radphyschem.2013.10.017.
  • Devaux, J.; Godard, P.; Mercier, J. P. Bisphenol-A Polycarbonate-Poly (Butylene Terephthalate) Transesterification. 111. Study of Model Reactions. J. Polym. Sci. Polym. Phys. Ed. 1982, 20, 1895–1900. DOI: 10.1002/pol.1982.180201012.
  • Nouh, S. A.; Barakat, M. M. E.; Benthami, K.; Samy, R. M.; Elhalawany, N. Synthesis and Characterization of PANI-Co/PC Nanocomposite: Gamma Induced Changes in the Structure and Thermal Properties. Chem. Pap. 2021, 75, 2197–2205. DOI: 10.1007/s11696-020-01459-w.
  • Al Naim, A.; Alnaim, N.; Ibrahim, S. S.; Metwally, S. M. Effect of Gamma Irradiation on the Mechanical Properties of PVC/ZnO Polymer Nanocomposite. J. Radiat. Res. Appl. Sci. 2017, 10, 165–171. DOI: 10.1016/j.jrras.2017.03.004.
  • El-Mesady, I. A.; Rammah, Y. S.; Abdalla, A. M.; Ghanim, E. H. Gamma Irradiation Effect towards Photoluminescence and Optical Properties of Makrofol DE 6-2. Radiat. Phys. Chem. 2020, 168, 108578. DOI: 10.1016/j.radphyschem.2019.108578.
  • Abdallah, E. M.; Morsi, M. A.; Asnag, G. M.; Tarabiah, A. E. Structural, Optical, Thermal, and Dielectric Properties of Carboxymethyl Cellulose/Sodium Alginate Blend/Lithium Titanium Oxide Nanoparticles: Biocomposites for Lithiumion Batteries Applications. Intl. J. Energy Res. 2022, 46, 10741–10757. DOI: 10.1002/er.7877.
  • Rathore, B. S.; Gaur, M. S.; Singh, K. S. Investigation of Optical and Thermally Stimulated Properties of SiO2 Nanoparticles-Filled Polycarbonate. J. Appl. Polym. Sci. 2012, 126, 960–968. DOI: 10.1002/app.37004.
  • Alhazime, A. A.; Benthami, K.; Alsobhi, B. O.; Ali, G. W.; Nouh, S. A. Pani-Ag/PVA Nanocomposite: Gamma Induced Changes in the Thermal and Optical Characteristics. Vinyl Addit. Technol. 2021, 27, 47–53. DOI: 10.1002/vnl.21782.
  • Karthikeyan, B.; Hariharan, S.; Mangalaraja, R. V.; Pandiyarajan, T.; Udayabhaskar, R.; Sreekanth, P. Studies on NiO-PVA Composite Films for Opto-Electronics and Optical Limiters. IEEE Photon. Technol. Lett. 2018, 30, 1539–1542. DOI: 10.1109/LPT.2018.2859042.
  • Nouh, S. A.; Abou Elfadl, A.; Benthami, K.; Alhazime, A. A. Structural and Optical Characteristics of Laser Irradiated CdSe/PVA Nanocomposites. Int. Polym. Proc. 2019, 34, 255–261. DOI: 10.3139/217.3729.
  • Rakhshani, A. E. Study of Urbach Tail, Bandgap Energy and Grain-Boundary Characteristics in CdS by Modulated Photocurrent Spectroscopy. J. Phys. Condens. Matter 2000, 12, 4391–4400. DOI: 10.1088/0953-8984/12/19/309.
  • Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324–1324. DOI: 10.1103/PhysRev.92.1324.
  • Wahab, L. A.; Zayed, H. A.; Abd El-Galil, A. A. Study of Structural and Optical Properties of Cd1-xZnxSe Thin Films. Thin Solid Films 2012, 520, 5195–5199. DOI: 10.1016/j.tsf.2012.03.119.
  • Prasher, S.; Kumar, M.; Singh, S. Electrical and Optical Properties of O6þ Ion Beam–Irradiated Polymers. Int. J. Polym. Anal. Charact. 2014, 19, 204–211. DOI: 10.1080/1023666X.2014.879418.
  • Tauc, J. Optical Properties of Amorphous Semiconductors. In Amorphous and Liquid Semiconductors; Tauc, J., Ed.; Plenum Press: London, New York, 1974; p 159.
  • Dongol, M.; El-Denglawey, A.; Abd El Sadek, M. S.; Yahia, I. S. Thermal Annealing Effect on the Structural and the Optical Propertiesof Nano CdTe Films. Optik 2015, 126, 1352–1357. DOI: 10.1016/j.ijleo.2015.04.048.
  • Aziz, S. B.; Abdullah, O. G.; Hussein, A. M.; Ahmed, H. M. From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers 2017, 9, 626. DOI: 10.3390/polym9110626.
  • Palija, T.; Dobi, J.; Jai, M. A Photochemical Method for Improvement of Color Stability at Polymer–Wood Biointerfaces. Colloids Surf. B Biointerfaces 2013, 108, 152–157. DOI: 10.1016/j.colsurfb.2013.02.045.
  • Aziz, S. B.; Dannoun, E. M. A.; Tahir, D. A.; Hussen, S. A.; Abdulwahid, R. T.; Nofal, M. M.; Abdullah, R. M.; Hussein, A. M.; Brevik, I. Synthesis of PVA/CeO2 Based Nanocomposites with Tuned Refractive Index and Reduced Absorption Edge: Structural and Optical Studies. Materials 2021, 14, 1570. DOI: 10.3390/ma14061570.
  • Soylu, M.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Transparent CdO/n-GaN(0001) Heterojunction for Optoelectronic Applications. J. Phys. Chem. Solids 2015, 85, 26–33. DOI: 10.1016/j.jpcs.2015.04.015.
  • Bhavsar, V.; Tripathi, D. Study of Refractive Index Dispersion and Optical Conductivity of PPy Doped PVC Films. Indian J. Pure Appl. Phys. 2016, 54, 105–110. DOI: 10.56042/ijpap.v54i2.8509.
  • Brza, M. A.; Aziz, S. B.; Anuar, H.; Al Hazza, M. H. From Green Remediation to Polymer Hybrid Fabrication with Improved Optical Band Gaps. IJMS. 2019, 20, 3910. DOI: 10.3390/ijms20163910.
  • Shams-Eldin, M. A.; Wochnowski, C.; Koerdt, M.; Metev, S.; Hamza, A. A.; Jüptner, W. Characterization of the Optical-Functional Properties of a Waveguide Written by an UV Laser into a Planar Polymer Chip. Opt. Mater. 2005, 27, 1138–1148. DOI: 10.1016/j.optmat.2004.09.019.
  • Mudila, H.; Prasher, P.; Kumar, A.; Zaidi, M. G. H.; Verma, A. Effect of Temperature on the Polymerization and Optical Conductivity of Thin Flexible Polypyrrole/Starch Composites. J. Phys: Conf. Ser. Conf. Ser. 2019, 1531, 012105. DOI: 10.1088/1742-6596/1531/1/012105.
  • Wemple, S. H.; DiDomenico, M. Optical Dispersion and the Structure of Solids. Phys. Rev. Lett. 1969, 23, 1156–1160. DOI: 10.1103/PhysRevLett.23.1156.
  • Wemple, S. H.; DiDomenico, M. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B 1971, 3, 1338–1351. DOI: 10.1103/PhysRevB.3.1338.
  • Mahmoud, S. A.; Alshomer, S.; Tarawnh, M. A. Structural and Optical Dispersion Characterisation of Sprayed Nickel Oxide Thin Films. JMP 2011, 02, 1178–1186. DOI: 10.4236/jmp.2011.210147.
  • Yous, B.; Berger, J. M.; Ferraton, J. P.; Donnadieu, A. Gap Optique et Indice de Réfraction du Silicium Amorphe Préparé Par “Chemical Vapour Deposition” Entre 95 K et 673 K. Thin Solid Films 1981, 82, 279–285. DOI: 10.1016/0040-6090(81)90195-4.
  • Zhou, P.; You, G.; Li, J.; Wang, S.; Qian, S.; Chen, L. Annealing Effect of Linear and Nonlinear Optical Properties of Ag:Bi2O3 Nanocomposite Films. Opt. Express. 2005, 13, 1508–1514. DOI: 10.1364/OPEX.13.001508.
  • Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G. Linear and Nonlinear Optical Properties of Nanostructured Zn(1 − x)SrxO–PVA Composite Thin Films. Opt. Mater. 2014, 37, 42–50. DOI: 10.1016/j.optmat.2014.04.036.
  • Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G. Surfactant-Dependant Thermally Induced Nonlinear Optical Properties of L-Ascorbic Acid-Stabilized Colloidal GNPs and GNP–PVP Thin Films. RSC Adv. 2019, 9, 15502–15512. DOI: 10.1039/C9RA01598A.
  • Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley,.; G.; G. Comprehensive Study of -Alanine Passivated Colloidal Gold Nanoparticles and GNP-PVP Thin Films: Linear Optical Properties and Very Large Nonlinear Refractive Index, Absorption Coefficient, Third-Order Nonlinear Susceptibility Measurements and Effect of Passivation. Opt. Mater. 2021, 121, 111458. DOI: 10.1016/j.optmat.2021.111458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.