Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Latest Articles
27
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pharmacokinetics of Intranasal Drugs, Still a Missed Opportunity?

&
Received 05 Feb 2024, Accepted 25 Apr 2024, Accepted author version posted online: 30 Apr 2024
Accepted author version

References

  • Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Advanced drug delivery reviews, 2001, 50: S41-S67.
  • Ahmad S, Khan I, Pandit J, Emad NA, Bano S, Imtiyaz Dar K, Rizvi MA, Ansari MD, Aqil M, Sultana Y. Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. International Journal of Biological Macromolecules 2022, 221: 435–445.
  • Amini E. Advancing bioequivalence assessments of orally inhaled and nasal drug products (OINDPS) through in vitro, in vivo and in silico approaches. Thesis. University of Florida, 2022.
  • Attkins NJ, Heatherington AC, Phipps J, Verrier H, Huyghe I. Predictability of intranasal pharmacokinetics in man using pre-clinical pharmacokinetic data with a dopamine 3 receptor agonist, PF-219061, Xenobiotica, 2008, 39:7, 523-533.
  • Bacle A, Bouzillé G, Bruyère A, Cuggia M, Fardel O, Le Corre P. Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. European Journal of Pharmaceutics and Biopharmaceutics 2021, 164:36-53.
  • Boche M, Pokharkar V. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency. AAPS PharmSciTech, 2016, 18:686-96.
  • Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model–Based Intranasal Vaccine Research to Human. AAPS PharmSciTech, 2022, 23: 191.
  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nature neuroscience, 2002, 5:514-516.
  • Bruinsmann FA, Richter Vaz R, de Cristo Soares Alves A, Aguirre T, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019, 24, 4312.
  • Chamanza R, Wright JA. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates. Relevance to inhalation toxicology and human health risk assessment. Journal of comparative pathology, 2015, 153.4: 287-314.
  • Chaudhuri, S. R., & Lukacova, V. Simulating delivery of pulmonary (and intranasal) aerosolised drugs. Orally Inhaled Nasal Drug Prod, 2010 26-30.
  • Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug DiscoveryToday 2021, 26:2619-36
  • Chou K-J, Donovan MD. The distribution of local anesthetics into the CSF following intranasal administration. International Journal of Pharmaceutics 168 (1998) 137–145.
  • Chow H-HS, Anavy N, Villalobos A. Direct Nose ± Brain Transport of Benzoylecgonine Following Intranasal Administration in Rats. J Pharmaceutical Scieces 2001, 90:1729-35.
  • Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting, Drug Delivery, 2018,25:1634-1641.
  • Costa, C. P., Moreira, J. N., Lobo, J. M. S., & Silva, A. C. (2021). Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharmaceutica Sinica B, 11(4), 925-940.
  • Crim C, Pierre LN, Daley-Yates PT. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clinical therapeutics, 2001, 23(9): 1339-1354.
  • Daley-Yates PT, Larenas-Linnemann D, Bhargave C, Verma M. Intranasal Corticosteroids: Topical Potency, Systemic Activity and Therapeutic IndexJ Asthma Allergy. 2021; 14: 1093–1104.
  • Davis GA, Rudy AC, Archer SM, Wermeling DP. Bioavailability of intranasal butorphanol administered from a single-dose sprayer. American journal of health-system pharmacy, 2005, 62(1): 48-53.
  • de Oliveira ER Jr, Nascimento TL, Salomão MA, da Silva CG, Valadares MC, Lima EM. Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma. Pharm Res 2019, 36:131.
  • Dehghan MH, Gaikwad VM, Dandge B. Nasal Absorption of Drugs – Barriers and Solutions. Research J. Pharm. and Tech, 2009, 2 (4):634-42.
  • Dholakia J, Prabhakar B, Shende P. Strategies for the delivery of antidiabetic drugs via intranasal route. International Journal of Pharmaceutics, 2021, 608: 121068.
  • Ding X, Rose JP, Van Gelder J. Developability assessment of clinical drug products with maximum absorbable dose. International Journal of Pharmaceutics 2012, 427:260–269.
  • Duquesnoy C, Mamet JP, Sumner D, et al. Comparative clinical pharmacokinetics of single doses of sumatriptan following subcutaneous, oral, rectal and intranasal administration. Eur J Pharma Sci 1998; 6 (2): 99-104.
  • El Taweel MM, Aboul-EinienMH, Kassem MA, Elkasabgy NA. Intranasal Zolmitriptan-Loaded Bilosomes with Extended Nasal Mucociliary Transit Time for Direct Nose to Brain Delivery. Pharmaceutics 2021, 13, 1828.
  • Fatouh AM, Elshafeey AH, Abdelbary A. Agomelatine-based in situ gels for brain targeting via the nasal route: statistical optimization, in vitro, and in vivo evaluation, Drug Delivery, 2017, 24:1077-1085
  • Fortuna A, Alves G, Serralheiro A, Sousa J, Falcao A. Intranasal delivery of systemic-acting drugs: Small-molecules and biomacromolecules. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88: 8–27
  • Fransén, N., Bredenberg, S., & Björk, E. Clinical study shows improved absorption of desmopressin with novel formulation. Pharmaceutical research, 2009, 26: 1618-1625.
  • Gadhave D, Gorain B, Tagalpallewar A, Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. Journal of Drug Delivery Science and Technology 2019, 51:276–289.
  • Gizurarson, S. (1990) Animal models for intranasal drug delivery studies. Acta Pharm. Nord. 2, 105- 122.
  • Gizurarson S. The relevance of nasal physiology to the design of drug absorption studies. Advanced drug delivery reviews, 1993, 11.3: 329-347.
  • Gizurarson S. The Effect of Cilia and the Mucociliary Clearance on Successful Drug Delivery. Biol. Pharm. Bull. 2015,38: 497–506
  • Gonçalves J, Bickera J, Gouveia F, Liberal J, Oliveira RC., Alves G, Falcão A, Fortuna A. Nose-to-brain delivery of levetiracetam after intranasal administration to mice. International Journal of Pharmaceutics 2019, 564.329–339
  • Gonçalves J, Alves G, Carona A, Bicker J, Vitorino C, Falcão A, Ana Fortuna A. Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration Pharm Res 2020, 37: 74.
  • Haasbroek‐Pheiffer A, Van Niekerk S, Van der Kooy F, Cloete T, Steenekamp J, Hamman J. In vitro and ex vivo experimental models for evaluation of intranasal systemic drug delivery as well as direct nose‐to‐brain drug delivery. Biopharm Drug Dispos. 2023;44:94–112.
  • Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicologic pathology, 2006, 34.3: 252-269.
  • Jogani VV, Shah PJ, Mishra P, Mishra AK, Misra AR. Nose-to-brain delivery of tacrine. J Pharmacy Pharmacol 2007, 59: 1199–1205.
  • Johansson CJ, Olsson P, Bende M, Carlsson T, Gunnarsson PO. Absolute bioavailability of nicotine applied to different nasal regions. European journal of clinical pharmacology, 1991, 41: 585-588.
  • Kadakia E, Bottino D, Amiji M. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharm Res 2019 36: 75
  • Kalanuria, A. A., & Peterlin, B. L. (2009). A review of the pharmacokinetics, pharmacodynamics and efficacy of zolmitriptan in the acute abortive treatment of migraine. Clinical Medicine. Therapeutics, 1, CMT-S2056.
  • Kaur P, Kim K. Pharmacokinetics and brain uptake of diazepam after intravenous and intranasal administration in rats and rabbits. International Journal of Pharmaceutics 2008, 364:27–35
  • Keller L-A, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022; 12(4): 735–757.
  • Kima TK, Kang W, Chunc IK, Ohd SY, Leea YH, Gwaka HS. Pharmacokinetic evaluation and modeling of formulated levodopa intranasal delivery systems. European Journal of Pharmaceutical Sciences 2009, 38: 525–532.
  • Kozlovskaya, L., Abou-Kaoud, M., & Stepensky, D. (2014). Quantitative analysis of drug delivery to the brain via nasal route. Journal of controlled release, 189, 133-140.
  • Kumar M, Misra A, Mishra AK, Mishra P, Pathak K, Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting, Journal of Drug Targeting, 2008a, 16: 806-814.
  • Kumar M, Misra A, Babbar K, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharmaceuticcs 2008b, 358:285-291.
  • Li A, Yuen VM, Goulay-Dufaÿ S, Sheng Y, Standing JF, Kwok PCL … Irwin MG. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. British Journal of Anaesthesia, 2018, 120:960-968.
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Advanced drug delivery reviews, 2012, 64.7: 614-628.
  • Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting, Drug Delivery 2014, 21:148-154.
  • Mardikasari SA, Sipos B, Csòka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. Journal of Drug Delivery Science and Technology 2022, 77:103887 Ref2
  • Martins DA, Mazibuko N, Zelaya F, Vasilakopoulou S, Loveridge J, Oates A, et al. Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nat Commun. 2020;11:1160.
  • Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. European Journal of Pharmaceutical Sciences 2013, 48 393–405.
  • Merkus P, Guchelaar HJ, Bosch DA, Merkus FW. Direct access of drugs to the human brain after intranasal drug administration? Neurology, 2003, 60:1669-1671.
  • Milewski M, Goodey A, Lee D, Rimmer E, Saklatvala R, Koyama S, Iwashima M, Haruta S. Rapid Absorption of Dry-Powder Intranasal Oxytocin. Pharm Res 2016 33:1936–1944.
  • Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective, Drug Delivery, 2014, 21:75-86.
  • Mustafa G, Ahuja A, Al Rohaimi AH, Muslim S, Hassan AA, Baboota S, Ali J. Nano-ropinirole for the management of Parkinsonism: blood–brain pharmacokinetics and carrier localization, Expert Review of Neurotherapeutics, 2015, 15:695-710.
  • Mygind N, Dahl R. Anatomy, physiology and function of the nasal cavities in health and disease. Advanced drug delivery reviews, 1998, 29.1-2: 3-12.
  • Nardi-Hiebl S, Ndieyira JW, Al Enzi Y, Al Akkad W, Koch T, Geldner G, Reyher C, Eberhart LHJ. Pharmacokinetic Characterisation and Comparison of Bioavailability of Intranasal Fentanyl, Transmucosal, and Intravenous Administration through a Three-Way Crossover Study in 24 Healthy Volunteers. Pain Res Manag. 2021; 2887773.
  • Noorulla M, Yasir M, Muzaffar F, S R, Ghoneim MM, Almurshedi AS, Tura AJ, Alshehri S, Gebissa T, Mekit S, Ahmed MM, Zafar A.Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and In-Vivo preclinical evaluation. Journal of Drug Delivery Science and Technology 2022, 67: 102939.
  • Oliveira P; Fortuna A, Alves G, Falcao A. Drug-metabolizing Enzymes and Efflux Transporters in Nasal Epithelium: Influence on the Bioavailability of Intranasally Administered Drugs. Current Drug Metabolism, 2016, 17: 628-647.
  • Pailla SR, Sampathi S, Junnuthula V, Maddukuri, S, Dodoala S, Dyawanapelly S. Brain-Targeted Intranasal Delivery of Zotepine Microemulsion: Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022, 14, 978.
  • Papakyriakopoulou P, Balafas E, Colombo G, Rekkas DM, Kostomitsopoulos N, Valsami G. Nose-to-Brain delivery of donepezil hydrochloride following administration of an HPMC-Me-β-CD-PEG400 nasal film in mice. Journal of Drug Delivery Science and Technology 2023, 84:104463.
  • Parrott, N., & Lave, T. 16 Computer Models for Predicting Drug. Oral Drug Absorption: Prediction and Assessment, 2016, 193, 338.
  • Pelser A, M.uller DG, du Plessis J, du Preez JL, Goosen C. Comparative Pharmacokinetics of Single Doses of Doxylamine Succinate Following Intranasal, Oral and Intravenous Administration in Rats. Biopharmaceutics Drug Disp 2002, 23: 239–244.
  • Pearson RG, Masud T, Blackshaw E, Naylor A, Hinchcli M, Jeery K, Jordan F, Shabir-Ahmed A, King G, Lewis AL, Illum L, Perkins AC, Nasal Administration and Plasma Pharmacokinetics of Parathyroid Hormone Peptide PTH 1-34 for the Treatment of Osteoporosis. Pharmaceutics 2019, 11: 265
  • Perez-Ruixo, C., Rossenu, S., Zannikos, P., Nandy, P., Singh, J., Drevets, W. C., & Perez-Ruixo, J. J. (2021). Population pharmacokinetics of esketamine nasal spray and its metabolite noresketamine in healthy subjects and patients with treatment-resistant depression. Clinical Pharmacokinetics, 60, 501-516.
  • Pires A, Fortuna A, Alves G, Falcão A. Intranasal Drug Delivery: How, Why and What for? Pharm Pharmaceut Sci, 2009, 12(3) 288 - 311
  • Quintana DS, Lischke A, Grace S, Scheele D, Ma Y, Becker B. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Molecular Psychiatry, 2021, 26:80–91
  • Rais R, Wozniak RR, Wu K, Niwa Y, Stathis M, Alt J, et al. Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration. PLoS ONE 2015, 10(7): e0131861.
  • Rautiola D, Maglalang PD, Cheryala N, Nelson KM, Georg G I, Fine JM., … & Siegel RA. Intranasal coadministration of a diazepam prodrug with a converting enzyme results in rapid absorption of diazepam in rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 370: 796-805.
  • Reddy MB, Yang RSH, Clewell III HJ, Andersen ME. Physiologically-based pharmacokinetic modeling: science and applications John Wiley and sons. 2005.
  • Rembratt, A., Graugaard-Jensen, C., Senderovitz, T., Norgaard, J. P., & Djurhuus, J. C. (2004). Pharmacokinetics and pharmacodynamics of desmopressin administered orally versus intravenously at daytime versus night-time in healthy men aged 55–70 years. European journal of clinical pharmacology, 60, 397-402.
  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications 4th ed. 2011 Wolters Kluver, Lippincott Williams and Wilkins.
  • Ruigrok MJR, de Lange ECM. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. The AAPS journal, 2015, 17: 493-505.
  • Ryan SA, Dunne RB. Pharmacokinetic properties of intranasal and injectable formulations of naloxone for community use: a systematic review. Pain management, 2018, 8:231-245.
  • Sabale AS; Kulkarni AD, Sabale AS. Nasal in situ gel: novel approach for nasal drug delivery. Journal of Drug Delivery and Therapeutics, 2020, 10.2-s: 183-197.
  • Sano, K., Ainai, A., Suzuki, T., & Hasegawa, H. (2018). Intranasal inactivated influenza vaccines for the prevention of seasonal influenza epidemics. Expert review of vaccines, 17(8), 687-696.
  • Serralheiro A, Alves G, Fortuna A, Falcão A. Intranasal administration of carbamazepine to mice: A direct delivery pathway for brain targeting. European Journal of Pharmaceutical Sciences 2014, 60:32–39.
  • Smith D, H van der Wateerbeemd, Walker DK. Pharmacokinetics and Metabolism in drug design. Method and Principles in medicinal chemistry, Mannhold R, Kubinyi H, Timmerman H. Editors 2001 Wiley-VCH.
  • Stevens J, Ploeger BA, van der Graaf PH, Danhof M, de Lange ECM. Systemic and Direct Nose-to-Brain Transport Pharmacokinetic Model for Remoxipride after Intravenous and Intranasal Administration. Drug Metabolims Disp 2011, 39:2275–2282.
  • Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, de Lange EC. Mechanism-based PK–PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. Journal of pharmacokinetics and pharmacodynamics, 2012, 39:463-477.
  • Striepens N, Kendrick KM, Hanking V, Landgraf R, Wüllner U, Maier W, Hurlemann R. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Scientific reports, 2013, 3: 3440.
  • Strolin Benedetti M, Whomsley R, Poggesi I, Cawello W, Mathy F-X, Delporte M-L, Papeleu P, Watelet J-B. Drug metabolism and pharmacokinetics. Drug Metabolism Reviews, 2009; 41(3): 344–390.
  • Thornton-Manning JR, Dahl AR. Metabolic capacity of nasal tissue interspecies comparisons of xenobiotic-metabolizing enzymes. Mutation Research 1997, 380: 43–59.
  • Uchida M, Katoh T, Mori M, Maeno T, Ohtake K, Kobayashi J, Morimoto Y, Natsume H. Intranasal Administration of Milnacipran in Rats: Evaluation of the Transport of Drugs to the Systemic Circulation and Central Nervous System and the Pharmacological Effect. Biol. Pharm. Bull. 2011, 34: 740—747 (2011).
  • Ugwoke NV, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery JpharmacyPharmacol 2001, 53: 3–2
  • Veening JG, Olivier B. Intranasal administration of oxytocin: Behavioral and clinical effects, a review Neuroscience and Biobehavioral Reviews 2013, 37:1445–1465 I
  • Wang Z, Xiong G, Chun Tsang W, Schätzlein AG, Uchegbu IF. Nose-to-Brain Delivery. Pharmacol Exp Ther 2019, 370:593–601.
  • Weksler N, Brill S, Tarnapolski A, Gurman GM. Intranasal salbutamol instillation in asthma attack. The American journal of emergency medicine, 1999, 17(7):686-688.
  • Willemin ME, Zannikos P, Mannens G, de Zwart L, Snoeys J. Prediction of drug–drug interactions after Esketamine intranasal administration using a physiologically based pharmacokinetic model. Clinical Pharmacokinetics, 2022, 61: 1115-1128.
  • Williams AJ, Jordan F, King G, Lewis AL, Illum L, Masud T, Perkins AC, Pearson RG. In vitro and preclinical assessment of an intranasal spray formulation of parathyroid hormone PTH 1-34 for the treatment of osteoporosis. Int. J. Pharm. 2018, 535, 113–119.
  • Wu X, Zhang F, Yu M, Ding F, Luo J, Liu B., … & Wang H. (2022). Semi-PBPK modeling and simulation to evaluate the local and systemic pharmacokinetics of OC-01 (Varenicline) nasal spray. Frontiers in Pharmacology, 13, 910629.
  • Yao S, Chen Y, Zhuang Q, Zhang Y, Lan C, Zhu S, … & Kendrick KM. Sniffing oxytocin: Nose to brain or nose to blood? Molecular Psychiatry, 2023: 28:3083–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.