6
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of Sustainable Biofuel from Seed Waste Using Pyrolysis and Its Sustainability in the Compression Ignition Engine Application

&

References

  • N. Jamsran and O. Lim, “A study on the autoignition characteristics of DME–LPG dual fuel in the HCCI engine,” Heat Transf. Eng., vol. 37, no. 17, pp. 1488–1497, 2016. DOI: 10.1080/01457632.2016.1142816.
  • G. Shu, L. Shi, H. Tian and L. Chang, “Comparison and selection research of CO2-based transcritical rankine cycle using for gasoline and diesel engine’s waste heat recovery,” Heat Transf. Eng., vol. 39, no. 7–8, pp. 672–686, 2018. DOI: 10.1080/01457632.2017.1325678.
  • A. J. Torregrosa, P. Olmeda, J. Martín and C. Romero, “A tool for predicting the thermal performance of a diesel engine,” Heat Transf. Eng., vol. 32, no. 10, pp. 891–904, 2011. DOI: 10.1080/01457632.2011.548639.
  • R. M. Alagu and E. Ganapathy Sundaram, “Preparation and characterization of pyrolytic oil through pyrolysis of neem seed and study of performance, combustion and emission characteristics in CI engine,” J. Energy Inst., vol. 91, no. 1, pp. 100–109, Feb. 2018. DOI: 10.1016/j.joei.2016.10.003.
  • R. Sakthivel, K. Ramesh, P. M. Shameer and R. Purnachandran, “A complete analytical characterization of products obtained from pyrolysis of wood barks of Calophyllum inophyllum,” Waste Biomass Valor, vol. 10, no. 8, pp. 2319–2333, 2019. DOI: 10.1007/s12649-018-0236-7.
  • A. K. Varma, L. S. Thakur, R. Shankar and P. Mondal, “Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products,” Waste Manag., vol. 89, pp. 224–235, Apr. 2019. DOI: 10.1016/j.wasman.2019.04.016.
  • P. Stehlik, “Heat exchangers as equipment and integrated items in waste and biomass processing,” Heat Transf. Eng., vol. 28, no. 5, pp. 383–397, 2007. DOI: 10.1080/01457630601163520.
  • V. Karuppasamy Vikraman, D. Praveen Kumar, G. Boopathi and P. Subramanian, “Kinetic and thermodynamic study of finger millet straw pyrolysis through thermogravimetric analysis,” Bioresour. Technol., vol. 342, pp. 125992, Dec. 2021. DOI: 10.1016/j.biortech.2021.125992.
  • E. David and J. Kopac, “Pyrolysis of rapeseed oil cake in a fixed bed reactor to produce bio-oil,” J. Anal. Appl. Pyrolysis., vol. 134, pp. 495–502, Sep. 2018. DOI: 10.1016/j.jaap.2018.07.016.
  • A. Sahoo, S. Kumar, J. Kumar and T. Bhaskar, “A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora and Lantana camara) by thermogravimetric analysis,” Bioresour. Technol., vol. 319, pp. 124060, Jan. 2021. DOI: 10.1016/j.biortech.2020.124060.
  • C. Acikgoz and O. M. Kockar, “Characterization of slow pyrolysis oil obtained from linseed (Linum usitatissimum L.),” J. Anal. Appl. Pyrolysis., vol. 85, no. 1–2, pp. 151–154, May 2009. DOI: 10.1016/j.jaap.2008.08.011.
  • A. K. Varma and P. Mondal, “Physicochemical characterization and kinetic study of pine needle for pyrolysis process,” J. Therm. Anal. Calorim., vol. 124, no. 1, pp. 487–497, Apr. 2016. DOI: 10.1007/s10973-015-5126-7.
  • Z. Zhao et al., “Structure effect on heating performance of microwave inductive waste lubricating oil pyrolysis,” Heat Transf. Eng., vol. 42, no. 16, pp. 1381–1389, 2021. DOI: 10.1080/01457632.2020.1794629.
  • S. Stegen and P. Kaparaju, “Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse,” Fuel, vol. 276, pp. 118112, Sep. 2020. DOI: 10.1016/j.fuel.2020.118112.
  • B. Paramasivam, R. Kasimani and S. Rajamohan, “Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends,” Environ. Sci. Pollut. Res. Int., vol. 25, no. 33, pp. 33806–33819, Nov. 2018. DOI: 10.1007/s11356-018-3319-x.
  • A. K. Varma and P. Mondal, “Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products,” Ind. Crop. Prod., vol. 95, pp. 704–717, Jan. 2017. DOI: 10.1016/j.indcrop.2016.11.039.
  • K. P. Shadangi and K. Mohanty, “Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel,” Fuel, vol. 115, pp. 434–442, Jan. 2014. DOI: 10.1016/j.fuel.2013.07.053.
  • A.-D. Faik, Y. Zhang and S. d Morais Hanriot, “Droplet combustion characteristics of biodiesel–diesel blends using high speed backlit and schlieren imaging,” Heat Transf. Eng., vol. 40, no. 13–14, pp. 1085–1098, 2019. DOI: 10.1080/01457632.2018.1457209.
  • R. I. Urrutia et al., “Sunflower seed hulls waste as a novel source of insecticidal product: pyrolysis bio-oil bioactivity on insect pests of stored grains and products,” J. Clean. Prod., vol. 287, pp. 125000, Mar. 2021. DOI: 10.1016/j.jclepro.2020.125000.
  • A. Sahoo, S. Kumar and K. Mohanty, “Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer,” Renew. Energy, vol. 165, no. 1, pp. 261–277, Mar. 2021. DOI: 10.1016/j.renene.2020.11.011.
  • D. Pradhan, H. Bendu, R. K. Singh and S. Murugan, “Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines,” Energy, vol. 118, pp. 600–612, Jan. 2017. DOI: 10.1016/j.energy.2016.10.091.
  • R. S. Kumar, S. Sivakumar, A. Joshuva, G. Deenadayalan and R. Vishnuvardhan, “Bio-fuel production from Martynia annua L. seeds using slow pyrolysis reactor and its effects on diesel engine performance, combustion and emission characteristics,” Energy, vol. 217, pp. 119327, Feb. 2021. DOI: 10.1016/j.energy.2020.119327.
  • S. Gowthaman and K. Thangavel, “Performance, emission and combustion characteristics of a diesel engine fuelled with diesel/coconut shell oil blends,” Fuel, vol. 322, pp. 124293, Aug. 2022. DOI: 10.1016/j.fuel.2022.124293.
  • S. Singh, J. P. Chakraborty and M. K. Mondal, “Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods,” Fuel, vol. 259, pp. 116263, Jan. 2020. DOI: 10.1016/j.fuel.2019.116263.
  • M. A. Kader, M. R. Islam, M. Parveen, H. Haniu and K. Takai, “Pyrolysis decomposition of tamarind seed for alternative fuel,” Bioresour. Technol., vol. 149, pp. 1–7, Dec. 2013. DOI: 10.1016/j.biortech.2013.09.032.
  • N. Bhattacharjee and A. B. Biswas, “Journal of environmental chemical engineering pyrolysis of orange bagasse: comparative study and parametric in fl uence on the product yield and their characterization,” J. Environ. Chem. Eng., vol. 7, no. 1, pp. 102903, Feb. 2019. DOI: 10.1016/j.jece.2019.102903.
  • P. Sakulkit, A. Palamanit, R. Dejchanchaiwong and P. Reubroycharoen, “Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications,” J. Environ. Chem. Eng., vol. 8, no. 6, pp. 104561, Dec. 2020. DOI: 10.1016/j.jece.2020.104561.
  • H. H. Muigai, B. J. Choudhury, P. Kalita and V. S. Moholkar, “Physico–chemical characterization and pyrolysis kinetics of Eichhornia Crassipes, Thevetia Peruviana, and Saccharum Officinarum,” Fuel, vol. 289, pp. 119949, Apr. 2021. DOI: 10.1016/j.fuel.2020.119949.
  • R. K. Mishra and K. Mohanty, “Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels,” Biomass Conv. Bioref., vol. 8, no. 4, pp. 799–812, 2018. DOI: 10.1007/s13399-018-0332-8.
  • R. K. Mishra, “Pyrolysis of low-value waste switchgrass: physicochemical characterization, kinetic investigation, and online characterization of hot pyrolysis vapours,” Bioresour. Technol., vol. 347, pp. 126720, Mar. 2022. DOI: 10.1016/j.biortech.2022.126720.
  • S. Ceylan and Y. Topçu, “Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis,” Bioresour. Technol., vol. 156, pp. 182–188, Mar. 2014. DOI: 10.1016/j.biortech.2014.01.040.
  • P. Doshi, G. Srivastava, G. Pathak and M. Dikshit, “Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel,” Waste Manag., vol. 34, no. 10, pp. 1836–1846, Oct. 2014. DOI: 10.1016/j.wasman.2013.12.018.
  • M. Kumar, S. N. Upadhyay and P. K. Mishra, “A comparative study of thermochemical characteristics of lignocellulosic biomasses,” Bioresour. Technol. Rep., vol. 8, pp. 100186, Dec. 2019. DOI: 10.1016/j.biteb.2019.100186.
  • R. Sakthivel and K. Ramesh, “Influence of temperature on yield, composition and properties of the sub-fractions derived from slow pyrolysis of Calophyllum inophyllum de-oiled cake,” J. Anal. Appl. Pyrolysis., vol. 127, pp. 159–169, Sep. 2017. DOI: 10.1016/j.jaap.2017.08.012.
  • R. K. Mishra and K. Mohanty, “Thermocatalytic conversion of non-edible Neem seeds towards clean fuel and chemicals,” J. Anal. Appl. Pyrolysis., vol. 134, pp. 83–92, Sep. 2018. DOI: 10.1016/j.jaap.2018.05.013.
  • B. Biswas et al., “Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk,” Bioresour. Technol., vol. 237, pp. 57–63, Aug. 2017. DOI: 10.1016/j.biortech.2017.02.046.
  • V. K. Singh, A. B. Soni, S. Kumar and R. K. Singh, “Pyrolysis of sal seed to liquid product,” Bioresour. Technol., vol. 151, pp. 432–435, Jan. 2014. DOI: 10.1016/j.biortech.2013.10.087.
  • G. Bensidhom et al., “Pyrolysis of Date palm waste in a fixed-bed reactor: characterization of pyrolytic products,” Bioresour. Technol., vol. 247, pp. 363–369, Jan. 2018. DOI: 10.1016/j.biortech.2017.09.066.
  • M. Elkelawy et al., “Diesel/biodiesel/silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine,” Energy, vol. 216, pp. 119284, Feb. 2021. DOI: 10.1016/j.energy.2020.119284.
  • Q. Chen, W. Han, Q. Zhang, W. Liu and N. Dong, “Evolution of microscopic morphology and surface features of cornstalk torrefied with/without O2 involving,” Heat Transf. Eng., vol. 43, no. 13, pp. 1171–1177, 2022. DOI: 10.1080/01457632.2021.1943881.
  • M. Krishnamoorthi and R. Malayalamurthi, “Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine,” Renew. Energy, vol. 119, pp. 235–252, Apr. 2018. DOI: 10.1016/j.renene.2017.12.015.
  • K. Midhun Prasad and S. Murugavelh, “Experimental investigation and kinetics of tomato peel pyrolysis: performance, combustion and emission characteristics of bio-oil blends in diesel engine,” J. Clean. Prod., vol. 254, pp. 120115, May 2020. DOI: 10.1016/j.jclepro.2020.120115.
  • S. Chandra Sekhar et al., “Biodiesel production process optimization from Pithecellobium dulce seed oil: performance, combustion, and emission analysis on compression ignition engine fuelled with diesel/biodiesel blends,” Energy Convers. Manag., vol. 161, pp. 141–154, Apr. 2018. DOI: 10.1016/j.enconman.2018.01.074.
  • S. Rajamohan and R. Kasimani, “Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends,” Environ. Sci. Pollut. Res. Int., vol. 25, no. 10, pp. 9523–9538, Apr. 2018. DOI: 10.1007/s11356-018-1241-x.
  • S. Kumar, R. Prakash, S. Murugan and R. K. Singh, “Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine,” Energy Convers. Manag., vol. 74, pp. 323–331, Oct. 2013. DOI: 10.1016/j.enconman.2013.05.028.
  • M. Mubarak, A. Shaija and T. V. Suchithra, “Experimental evaluation of Salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine,” Fuel, vol. 287, pp. 119526, Mar. 2020. DOI: 10.1016/j.fuel.2020.119526.
  • M. Thillainayagam et al., “Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine,” Environ. Sci. Pollut. Res. Int., vol. 24, no. 20, pp. 16725–16734, Jul. 2017. DOI: 10.1007/s11356-017-9161-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.