47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Investigation of Thermohydraulic Characteristics in Supercritical CO2 Natural Circulation Loop with Spatially Varying Temperature

ORCID Icon, ORCID Icon & ORCID Icon

References

  • S. Bhattacharyya, D. N. Basu and P. K. Das, “Two-phase natural circulation loops: a review of the recent advances,” Heat Transf. Engng., vol. 33, no. 4–5, pp. 461–482, Mar. 2012. DOI: 10.1080/01457632.2012.614155.
  • H. Tokanai, Y. Ohtomo, H. Horiguchi, E. Harada and M. Kuriyama, “Heat transfer of supercritical CO2 flow in natural convection circulation system,” Heat Transf. Engng., vol. 31, no. 9, pp. 750–756, Aug. 2010. DOI: 10.1080/01457630903500924.
  • Q. Wang, J. Xu, C. Zhang, B. Hao and L. Cheng, “A critical review on heat transfer of supercritical fluids,” Heat Transf. Engng., vol. 44, no. 21–22, 2023. DOI: 10.1080/01457632.2022.2164684.
  • D. J. Close, “The performance of solar water heaters with natural circulation,” Solar Energ., vol. 6, no. 1, pp. 33–40, Jan–Mar. 1962. DOI: 10.1016/0038-092X(62)90096-8.
  • D. B. Kreitlow, G. M. Reistad, C. R. Miles and G. G. Culver, “Thermosyphon models for downhole heat exchanger applications in shallow geothermal systems,” J. Heat Transf., vol. 100, no. 4, pp. 713–719, Nov. 1978. DOI: 10.1115/1.3450883.
  • D. Japikse, “Advances in thermosyphon technology,” Adv. Heat Transf., vol. 9, no. C, pp. 1–111, Jan. 1973. DOI: 10.1016/S0065-2717(08)70061-3.
  • H. Cohen and F. J. Bayley, “Heat-transfer problems of liquid-cooled gas-turbine blades,” Proc. Inst. Mech. Engrs., vol. 169, no. 1, pp. 1063–1080, Jun. 1955. DOI: 10.1243/PIME_PROC_1955_169_106_02.
  • R. K. Sinha and A. Kakodkar, “Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor,” Nucl. Engng. Design, vol. 236, no. 7, pp. 683–700, 2006. DOI: 10.1016/j.nucengdes.2005.09.026.
  • J. Madejski and J. Mikielewicz, “Liquid fin: a new device for heat-transfer equipment,” Int. J. Heat Mass Transf., vol. 14, no. 3, pp. 357–363, Mar. 1971. DOI: 10.1016/0017-9310(71)90155-4.
  • M. Sedighi, et al., “High-temperature, point-focus, pressurized gas-phase solar receivers: a comprehensive review,” Energy Convers. Manag., vol. 185, pp. 678–717, Apr. 2019. DOI: 10.1016/j.enconman.2019.02.020.
  • D. E. Kim, M. H. Kim, J. E. Cha and S. O. Kim, “Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model,” Nucl. Engng. Design, vol. 238, no. 12, pp. 3269–3276, Dec. 2008. DOI: 10.1016/j.nucengdes.2008.08.002.
  • S. I. Haider, Y. K. Joshi and W. Nakayama, “A natural circulation model of the closed loop, two-phase thermosyphon for electronics cooling,” J. Heat Transf., vol. 124, no. 5, pp. 881–890, Oct. 2002. DOI: 10.1115/1.1482404.
  • J. B. Joshi, “Computational flow modelling and design of bubble column reactors,” Chem. Eng. Sci., vol. 56, no. 21-22, pp. 5893–5933, Nov. 2001. (01)00273-1. DOI: 10.1016/S0009-2509.
  • C. Spaccapaniccia, P. Planquart and J.-M. Buchlin, “Mitigation of temperature gradients in the buffer tank of a natural circulation loop simulating passive decay heat removal in a pool type reactor,” Heat Transf. Engng., vol. 41, no. 15–16, pp. 1315–1340, 2020. DOI: 10.1080/01457632.2019.1628478.
  • I. L. Pioro and G. H. Rodriguez, “Chapter 2: Generation IV International Forum (GIF),” in Handbook of Generation IV Nuclear Reactors, 2nd ed., Amsterdam: Elsevier, Netherlands, pp. 111–132., 2023, DOI: 10.1016/B978-0-12-820588-4.00010-4.
  • A. K. Yadav, M. Ram Gopal and S. Bhattacharyya, “CO2 based natural circulation loops: new correlations for friction and heat transfer,” Int. J. Heat Mass Transf., vol. 55, no. 17–18, pp. 4621–4630, Aug. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.019.
  • A. K. Yadav, M. Ram Gopal and S. Bhattacharyya, “CFD analysis of a CO2 based natural circulation loop with end heat exchangers,” Appl. Therm. Eng., vol. 36, no. 1, pp. 288–295, Apr. 2012. DOI: 10.1016/j.applthermaleng.2011.10.031.
  • L. Chen, X.-R. Zhang and B.-L. Deng, “Near-critical natural circulation flows inside an experimental loop: stability map and heat transfer,” Heat Transf. Engng., vol. 37, no. 3–4, pp. 302–313, 2016. DOI: 10.1080/01457632.2015.1052680.
  • J. P. Holman and J. H. Boggs, “Heat transfer to Freon 12 near the critical state in a natural-circulation loop,” J. Heat Transf., vol. 82, no. 3, pp. 221–226, Aug. 1960. DOI: 10.1115/1.3679913.
  • M. K. S. Sarkar and D. N. Basu, “Working regime identification for natural circulation loops by comparative thermalhydraulic analyses with three fluids under identical operating conditions,” Nucl. Engng. Design, vol. 293, pp. 187–195, Nov. 2015. DOI: 10.1016/j.nucengdes.2015.07.046.
  • Y. Cao and X.-R. Zhang, “Flow and heat transfer characteristics of supercritical CO2 in a natural circulation loop,” Int. J. Thermal Sci., vol. 58, pp. 52–60, Aug. 2012. DOI: 10.1016/j.ijthermalsci.2012.02.023.
  • L. Chen, B.-L. Deng, B. Jiang and X.-R. Zhang, “Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops,” Nucl. Engng. Design, vol. 257, pp. 21–30, Apr. 2013. DOI: 10.1016/j.nucengdes.2013.01.016.
  • L. Chen, X.-R. Zhang, B.-L. Deng and B. Jiang, “Effects of inclination angle and operation parameters on supercritical CO2 natural circulation loop,” Nucl. Engng. Design, vol. 265, pp. 895–908, Dec. 2013. DOI: 10.1016/j.nucengdes.2013.06.037.
  • M. K. S. S. Sarkar and D. N. Basu, “Influence of geometric parameters on thermalhydraulic characteristics of supercritical CO2 in natural circulation loop,” Nucl. Engng. Design, vol. 324, pp. 402–415, Dec. 2017. DOI: 10.1016/j.nucengdes.2017.08.032.
  • M. Sharma, D. S. Pilkhwal, P. K. Vijayan, D. Saha and R. K. Sinha, “Steady-state behavior of natural circulation loops operating with supercritical fluids for open and closed loop boundary conditions,” Heat Transf. Engng., vol. 33, no. 9, pp. 809–820, 2012. DOI: 10.1080/01457632.2012.646920.
  • M. Sharma, P. K. Vijayan, D. S. Pilkhwal and Y. Asako, “Steady state and stability characteristics of natural circulation loops operating with carbon dioxide at supercritical pressures for open and closed loop boundary conditions,” Nucl. Engng. Design, vol. 265, pp. 737–754, Dec. 2013. DOI: 10.1016/j.nucengdes.2013.07.023.
  • L. Chen, X.-R. Zhang and B. Jiang, “Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop,” J. Heat Transf., vol. 136, no. 5, pp. 052501, May 2014. DOI: 10.1115/1.4025543.
  • M. Sharma, P. K. Vijayan, D. S. Pilkhwal and Y. Asako, “Natural convective flow and heat transfer studies for supercritical water in a rectangular circulation loop,” Nucl. Engng. Design, vol. 273, pp. 304–320, Jul. 2014. DOI: 10.1016/j.nucengdes.2014.04.001.
  • P. K. Vijayan, M. Sharma and D. Saha, “Steady state and stability characteristics of single-phase natural circulation in a rectangular loop with different heater and cooler orientations,” Exp. Therm. Fluid Sci., vol. 31, no. 8, pp. 925–945, Aug. 2007. DOI: 10.1016/j.expthermflusci.2006.10.003.
  • L. Chen, X.-R. Zhang, S. Cao and H. Bai, “Study of trans-critical CO2 natural convective flow with unsteady heat input and its implications on system control,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 7119–7132, Nov. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.027.
  • B. Deng, L. Chen, X. Zhang and L. Jin, “The flow transition characteristics of supercritical CO2 based closed natural circulation loop (NCL) system,” Ann. Nucl. Energ., vol. 132, pp. 134–148, Oct. 2019. DOI: 10.1016/j.anucene.2019.04.032.
  • L. Chen and X.-R. Zhang, “Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter,” J. Heat Transf., vol. 133, no. 12, pp. 122505, Dec. 2011. DOI: 10.1115/1.4004434.
  • M. K. S. Sarkar and D. N. Basu, “Numerical comparison of thermalhydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation Loop,” Nucl. Engng. Technol., vol. 49, no. 1, pp. 103–112, Feb. 2017. DOI: 10.1016/j.net.2016.09.007.
  • T. Wahidi, R. A. Chandavar and A. K. Yadav, “Supercritical CO2 flow instability in natural circulation loop: CFD analysis,” Ann. Nucl. Energ., vol. 160, pp. 108374, Sep. 2021. DOI: 10.1016/j.anucene.2021.108374.
  • P. K. Vijayan, “Experimental observations on the general trends of the steady state and stability behaviour of single-phase natural circulation loops,” Nucl. Engng. Design, vol. 215, no. 1–2, pp. 139–152, Jun. 2002. DOI: 10.1016/S0029-5493(02)00047-X.
  • K. Bodkha, D. S. Pilkhwal and N. K. Maheshwari, “Experimental investigations on thermal-hydraulics of supercritical carbon dioxide under natural circulation vertical flows,” J. Heat Transf., vol. 144, no. 8, pp. 082601, Aug. 2022. DOI: 10.1115/1.4054553.
  • H. E. Stanley and G. Ahlers, “Introduction to phase transitions and critical phenomena,” Phys. Today., vol. 26, no. 1, pp. 71–72, Jan. 1973. DOI: 10.1063/1.3127900.
  • G. Liao, et al., “Widom line of supercritical CO2 calculated by equations of state and molecular dynamics simulation,” J. CO2 Utilization, vol. 62, pp. 102075, Aug. 2022. DOI: 10.1016/j.jcou.2022.102075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.