56
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Axial vibration and strength failure analyses of a beam made of thermoelectric materials subjected to time-varying thermal loads

, , &
Pages 785-797 | Received 18 Apr 2023, Accepted 20 Dec 2023, Published online: 18 Apr 2024

References

  • S. Shoeibi, et al., “A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications,” Sustain. Energy Technol. Assess., vol. 52, pp. 102105, 2022. DOI: 10.1016/j.seta.2022.102105.
  • L. Bell, “Cooling heating generating power and recovering waste heat with thermoelectric systems,” Science, vol. 321, no. 5895, pp. 1457–1461, 2008. DOI: 10.1126/science.1158899.
  • H. B. Gao, et al., “Development of stove-powered thermoelectric generators: a review,” Appl. Thermal Eng., vol. 96, pp. 297–310, 2016. DOI: 10.1016/j.applthermaleng.2015.11.032.
  • T. Gong, Y. Wu, L. Gao, L. Zhang, J. Li and T. Ming, “Thermo-mechanical analysis on a compact thermoelectric cooler,” Energy, vol. 172, pp. 1211–1224, 2019. DOI: 10.1016/j.energy.2019.02.014.
  • B. Orr, A. Akbarzadeh, M. Mochizuki and R. Singh, “A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes,” Appl. Thermal Eng., vol. 101, pp. 490–495, 2016. DOI: 10.1016/j.applthermaleng.2015.10.081.
  • T. Ming, W. Yang, X. Huang, Y. Wu, X. Li and J. Liu, “Analytical and numerical investigation on a new compact thermoelectric generator,” Energy Convers. Manage., vol. 132, pp. 261–271, 2017. DOI: 10.1016/j.enconman.2016.11.043.
  • Y. Su, J. B. Lu and B. L. Huang, “Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances,” Int. J. Heat Mass Transf., vol. 117, pp. 436–446, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.023.
  • L. Lin, Y.-F. Zhang, H.-B. Liu, J.-H. Meng, W.-H. Chen and X.-D. Wang, “A new configuration design of thermoelectric cooler driven by thermoelectric generator,” Appl. Thermal Eng., vol. 160, pp. 114087, 2019. DOI: 10.1016/j.applthermaleng.2019.114087.
  • A. B. Zhang, et al., “Effects of interface layers on the performance of annular thermoelectric generators,” Energy, vol. 147, pp. 612–620, 2018. DOI: 10.1016/j.energy.2018.01.098.
  • L. J. Zheng, et al., “Theoretical analysis of natural evaporative cooling to enhance the efficiency of thermoelectric devices,” Int. J. Heat Mass Transf., vol. 143, pp. 118512, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118512.
  • S. J. Pang, Y. T. Zhou and F. J. Li, “Analytic solutions of thermoelectric materials containing a circular hole with a straight crack,” Int. J. Mech. Sci., vol. 144, pp. 731–738, 2018. DOI: 10.1016/j.ijmecsci.2018.06.022.
  • H. Wu, et al., “Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading,” J. Thermal Stress., vol. 39, no. 4, pp. 371–385, 2016. DOI: 10.1080/01495739.2016.1152108.
  • T. Cheng, et al., “Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments,” J. Thermal Stress., vol. 37, no. 1, pp. 14–33, 2013. DOI: 10.1080/01495739.2013.818891.
  • S. Shittu, et al., “High performance and thermal stress analysis of a segmented annular thermoelectric generator,” Energy Convers. Manage., vol. 184, pp. 180–193, 2019. DOI: 10.1016/j.enconman.2019.01.064.
  • H. P. Song, K. Song and C. F. Gao, “Temperature and thermal stress around an elliptic functional defect in a thermoelectric material,” Mech. Mater., vol. 130, pp. 58–64, 2019. DOI: 10.1016/j.mechmat.2019.01.008.
  • S. F. Fan and Y. W. Gao, “Fatigue life prediction of annular thermoelectric generators under thermal cycling load,” J. Electron. Mater., vol. 52, no. 2, pp. 960–970, 2023. DOI: 10.1007/s11664-022-10092-0.
  • B. L. Wang, Y. B. Guo and C. W. Zhang, “Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material,” Eng. Fract. Mech., vol. 152, pp. 1–9, 2016. DOI: 10.1016/j.engfracmech.2015.12.005.
  • Y. J. Cui, B. L. Wang and P. Wang, “Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions,” Int. J. Mech. Sci., vol. 149, pp. 393–401, 2018. DOI: 10.1016/j.ijmecsci.2017.10.049.
  • Z. H. Jin, “Buckling of thin film thermoelectrics,” Int. J. Fract., vol. 180, no. 1, pp. 129–136, 2013. DOI: 10.1007/s10704-012-9798-8.
  • Q. Huang, et al., “Examinations of vibration frequency and mode shape variations of quartz crystal plates in a thermal field with strain and kinetic energies,” J. Thermal Stress., vol. 43, no. 4, pp. 456–472, 2020. DOI: 10.1080/01495739.2020.1722049.
  • G. Chen, et al., “Modal analysis and study of the vibration characteristics of the thermoelectric modulus of vehicle exhaust power-generation systems,” J. Electron. Mater., vol. 43, no. 6, pp. 1952–1958, 2014. DOI: 10.1007/s11664-013-2919-y.
  • M. von Lukowicz, et al., “Thermoelectric generators on satellites an approach for waste heat recovery in space,” Energies, vol. 9, no. 7, pp. 541, 2016. DOI: 10.3390/en9070541.
  • K. Liu, et al., “Preparation and optimization of miniaturized radioisotope thermoelectric generator based on concentric filament architecture,” J. Power Sources, vol. 407, pp. 14–22, 2018. DOI: 10.1016/j.jpowsour.2018.10.052.
  • K. Liu, et al., “High-performance and integrated design of thermoelectric generator based on concentric filament architecture,” J. Power Sources, vol. 393, pp. 161–168, 2018. DOI: 10.1016/j.jpowsour.2018.05.018.
  • Y. J. Cui, B. L. Wang and K. F. Wang, “Thermally induced vibration and strength failure analysis of thermoelectric generators,” Appl. Thermal Eng., vol. 160, pp. 113991, 2019. DOI: 10.1016/j.applthermaleng.2019.113991.
  • Z. Soleimani, et al., “A review on recent developments of thermoelectric materials for room-temperature applications,” Sustain. Energy Technol. Assess., vol. 37, pp. 100604, 2020. DOI: 10.1016/j.seta.2019.100604.
  • S. M. M. Mofidian and H. Bardaweel, “A dual-purpose vibration isolator energy harvester: experiment and model,” Mech. Syst. Signal Process., vol. 118, pp. 360–376, 2019. DOI: 10.1016/j.ymssp.2018.08.054.
  • V. G. Cleante, et al., “On the target frequency for harvesting energy from track vibrations due to passing trains,” Mech. Syst. Signal Process., vol. 114, pp. 212–223, 2019. DOI: 10.1016/j.ymssp.2018.05.003.
  • Y. J. Cui, et al., “A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties,” Compos. Struct., vol. 229, pp. 111484, 2019. DOI: 10.1016/j.compstruct.2019.111484.
  • C. Ju, et al., “Revisiting the temperature dependence in material properties and performance of thermoelectric materials,” Energy, vol. 124, pp. 249–257, 2017. DOI: 10.1016/j.energy.2017.02.020.
  • H. S. Kim, et al., “Relationship between thermoelectric figure of merit and energy conversion efficiency,” Proc Natl Acad Sci U S A, vol. 112, no. 27, pp. 8205–8210, 2015. DOI: 10.1073/pnas.1510231112.
  • Y. Liu, et al., “Coupled thermo-electric-mechanical modeling of hybrid thermoelectric-piezoelectric energy harvester,” Sustain. Energy Technol. Assess., vol. 54, pp. 102845, 2022. DOI: 10.1016/j.seta.2022.102845.
  • Y. J. Cui, et al., “Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting,” Int. J. Heat Mass Transf., vol. 137, pp. 979–989, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.157.
  • K. Xie, H. Song, P. Schiavone and C. Gao, “Analytical solution of the temperature-dependent thermoelastic problem induced by Joule heating and the presence of an elliptic cavity,” J. Thermal Stress., vol. 47, no. 1, pp. 115–142, 2024. DOI: 10.1080/01495739.2023.2256823.
  • Y. Wu, et al., “Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator,” Energy Convers. Manage., vol. 88, pp. 915–927, 2014. DOI: 10.1016/j.enconman.2014.08.069.
  • J.-L. Gao, et al., “Thermal stress analysis and structures parameter selection for a Bi2Te3-based thermoelectric module,” J. Electron. Mater., vol. 40, no. 5, pp. 884–888, 2011. DOI: 10.1007/s11664-011-1611-3.
  • A. S. Al-Merbati, B. S. Yilbas and A. Z. Sahin, “Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance,” Appl. Thermal Eng., vol. 50, no. 1, pp. 683–692, 2013. DOI: 10.1016/j.applthermaleng.2012.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.