28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of dual-crosslinked nanocomposite gel for water management in high-temperature reservoirs

, , , , &
Received 22 Jan 2024, Accepted 29 Mar 2024, Published online: 18 Apr 2024

References

  • Haige, W.; Hongchun, H.; Wenxin, B. Deep and Ultra-Deep Oil and Gas Well Drilling Technologies: Progress and Prospect. Nat. Gas Ind. B 2022, 9, 141–157. DOI: 10.1016/j.ngib.2021.08.019.
  • Costam, R. Y.; Xiannan, W.; Fadjarijanto, A. 2020 A New Formation Tester and Its Applications in Extreme Ultrahigh Temperature Reservoir. Offshore Technology Conference. OTC-30777-MS. DOI: 10.4043/30777-MS.
  • Guo, J.; Yue, Y.; Song, M. 2010 The Research and Application of Ultra High Temperature Fracturing Technology for Glutenite Formations. The International Oil and Gas Conference and Exhibition in China, Beijing, China, June. SPE-131182-MS. DOI: 10.2118/131182-MS.
  • Bai, B.; Zhou, J.; Yin, M. A Comprehensive Review of Polyacrylamide Polymer Gels for Conformance Control. Pet. Explor. Dev. 2015, 42, 525–532. DOI: 10.1016/S1876-3804(15)30045-8.
  • Li, X.; Fu, M.; Liu, J.; Xiao, Q.; Tang, W.; Yang, G. Synthesis and Performance Evaluation of a Novel Heat and Salt-Resistant Gel Plugging Agent. Polymers. (Basel) 2022, 14, 3894. DOI: 10.3390/polym14183894.
  • Vermolen, E. C.; Van Haasterecht, M. J.; Masalmeh, S. K. 2011 Pushing the Envelope for Polymer Flooding towards High-Temperature and High-Salinity Reservoirs with Polyacrylamide Based Ter-Polymers. SPE Middle East Oil and Gas Show and Conference. One Petro. DOI: 10.2118/141497-MS.
  • Nurmi, L.; Sandengen, K.; Hanski, S. 2018 Sulfonated Polyacrylamides-Evaluation of Long Term Stability by Accelerated Aging at Elevated Temperature. SPE Improved Oil Recovery Conference? SPE: D031S009R006. DOI: 10.2118/190184-MS.
  • Chen, L.; Zhu, X.; Fu, M.; Zhao, H.; Li, G.; Zuo, J. Experimental Study of Calcium-Enhancing Terpolymer Hydrogel for Improved Oil Recovery in Ultrodeep Carbonate Reservoir. Colloids Surf, A 2019, 570, 251–259. DOI: 10.1016/j.colsurfa.2019.03.025.
  • Liu, J.; Zhong, L.; Wang, C.; Li, S.; Yuan, X.; Liu, Y.; Meng, X.; Zou, J.; Wang, Q. Investigation of a High Temperature Gel System for Application in Saline Oil and Gas Reservoirs for Profile Modification. J. Petrol Sci. Eng. 2020, 195, 107852–107865. DOI: 10.1016/j.petrol.2020.107852.
  • Liu, J.; Zhong, L.; Cao, Z.; Hao, T.; Liu, Y.; Wu, W. High‐Temperature Performance and Crosslinking Mechanism of Different Types of Gel Systems in Saline Environment. J. Appl. Polym. Sci. 2022, 139, 51452–51464. DOI: 10.1002/app.51452.
  • Zhao, G.; Dai, C.; Chen, A.; Yan, Z.; Zhao, M. Experimental Study and Application of Gels Formed by Nonionic Polyacrylamide and Phenolic Resin for in-Depth Profile Control. J. Petrol Sci. Eng. 2015, 135, 552–560. DOI: 10.1016/j.petrol.2015.10.020.
  • Liu, Y.; Dai, C.; You, Q. 2017 Experimental Investigation on a Novel Organic-Inorganic Crosslinked Polymer Gel for Water Control in Ultra-High Temperature Reservoirs. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, October. SPE-186225-MS. DOI: 10.2118/186225-MS.
  • Hutchins, R.; Dovan, H.; Sandiford, B. 1996 Field Applications of High Temperature Organic Gels for Water Control. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April. SPE-35444-MS. DOI: 10.2118/35444-MS.
  • Zhang, X.; Zhang, S.; Li, L.; Wu, R.; Liu, D.; Wu, J.; Wu, W. High‐Temperature‐Resistant Polymer Gel System with Metal–Organic Mixed Crosslinking Agents. J. Appl. Polym. Sci. 2015, 132, 42661–42669. DOI: 10.1002/app.42261.
  • Zhang, S.; Guo, J.; Gu, Y.; Zhao, Q.; Yang, R.; Yang, Y. Polyacrylamide Gel Formed by Cr (III) and Phenolic Resin for Water Control in High-Temperature Reservoirs. J. Petrol Sci. Eng. 2020, 194, 107423–107432. DOI: 10.1016/j.petrol.2020.107423.
  • Wu, W.-P.; Hou, J.-R.; Qu, M.; Yang, Y.-L.; Zhang, W.; Wu, W.-M.; Wen, Y.-C.; Liang, T.; Xiao, L.-X. A Novel Polymer Gel with High-Temperature and High-Salinity Resistance for Conformance Control in Carbonate Reservoirs. Pet. Sci. 2022, 19, 3159–3170. DOI: 10.1016/j.petsci.2022.05.003.
  • Chen, L.; Wang, J.; Yu, L.; Zhang, Q.; Fu, M.; Zhao, Z.; Zuo, J. Experimental Investigation on the Nanosilica-Reinforcing Polyacrylamide/Polyethylenimine Hydrogel for Water Shutoff Treatment. Energy Fuel. 2018, 32, 6650–6656. DOI: 10.1021/acs.energyfuels.8b00840.
  • Bai, Y.; Lian, Y.; Ban, C.; Wang, Z.; Zhao, J.; Zhang, H. Facile Synthesis of Temperature-Resistant Hydroxylated Carbon Black/Polyacrylamide Nanocomposite Gel Based on Chemical Crosslinking and Its Application in Oilfield. J. Mol. Liq. 2021, 329, 115578–115588. DOI: 10.1016/j.molliq.2021.115578.
  • Liu, Y.; Dai, C.; Wang, K.; Zou, C.; Gao, M.; Fang, Y.; Zhao, M.; Wu, Y.; You, Q. Study on a Novel Crosslinked Polymer Gel Strengthened with Silica Nanoparticles. Energy Fuel. 2017, 31, 9152–9161. DOI: 10.1021/acs.energyfuels.7b01432.
  • Jia, H.; Chen, H.; Zhao, J. Development of a Highly Elastic Composite Gel through Novel Intercalated Crosslinking Method for Wellbore Temporary Plugging in High-Temperature Reservoirs. SPE J. 2020, 25, 2853–2866. DOI: 10.2118/201090-PA.
  • Shamlooh, M.; Elaf, R.; Hussein, I. A.; Saad, M.; Bai, B. Chitosan/Polyacrylamide Green Gels for Water Control in High-Temperature Reservoirs. Energy Fuel. 2022, 36, 3816–3824. DOI: 10.1021/acs.energyfuels.2c00242.
  • Al-Muntasheri, G. A.; Nasr-El-Din, H. A.; Al-Noaimi, K. R.; Zitha, P. L. J. A Study of Polyacrylamide-Based Gels Crosslinked with Polyethyleneimine. SPE J. 2009, 14, 245–251. DOI: 10.2118/105925-PA.
  • Vasquez, J.; Dalrymple, E.; Eoff, L. 2005 Development and Evaluation of High-Temperature Conformance Polymer Systems. SPE International Symposium on Oilfield Chemistry, The Woodlands, Texas, February. SPE-93156-MS. DOI: 10.2118/93156-MS.
  • Sydansk, R. D.; Argabright, P. A. Conformance Improvement in a Subterranean Hydrocarbon-Bearing Formation Using a Crosslinked Polymer. US Patent No4683949. 1987.
  • Zhu, D.; Hou, J.; Wei, Q.; Chen, Y. Development of a High-Temperature-Resistant Polymer-Gel System for Conformance Control in Jidong Oil Field. SPE Reserv. Eval. Eng. 2019, 22, 100–109. DOI: 10.2118/186235-PA.
  • Wu, H.; Ge, J.; Yang, L.; Yang, Y.; Zhang, T.; Guo, H. Developments of Polymer Gel Plug for Temporary Blocking in SAGD Wells. J. Petrol Sci. Eng. 2022, 208, 109650–109660. DOI: 10.1016/j.petrol.2021.109650.
  • Fang, J.; Zhang, X.; He, L.; Zhao, G.; Dai, C. Experimental Research of Hydroquinone (HQ)/Hexamethylene Tetramine (HMTA) Gel for Water Plugging Treatments in High‐Temperature and High‐Salinity Reservoirs. J. Appl. Polym. Sci. 2017, 134, DOI: 10.1002/app.44359.
  • Amir, Z.; Mohd Saaid, I.; Mohamed Jan, B.; Khalil, M.; Abdul Patah, M. F.; Wan Bakar, W. Z. The Retardation of Polyacrylamide by Ammonium Chloride in High-Salinity and High-Temperature Conditions: Molecular Analysis. Polym. Bull. 2020, 77, 5469–5487. DOI: 10.1007/s00289-019-03023-3.
  • El-Karsani, K. S.; Al-Muntasheri, G. A.; Hussein, I. A. Polymer Systems for Water Shutoff and Profile Modification: A Review over the Last Decade. SPE J. 2014, 19, 135–149. DOI: 10.2118/163100-PA.
  • ElKarsani, K. S. M.; Al‐Muntasheri, G. A.; Sultan, A. S.; Hussein, I. A. Performance of PAM/PEI Gel System for Water Shut‐off in High Temperature Reservoirs: Laboratory Study. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.41869.
  • El-Karsani, K. S. M.; Al-Muntasheri, G. A.; Sultan, A. S.; Hussein, I. A. Gelation of a Water-Shutoff Gel at High Pressure and High Temperature: Rheological Investigation. SPE J. 2015, 20, 1103–1112. DOI: 10.2118/173185-PA.
  • Wang, W.; Xu, Y.; Ge, J.; Guo, H.; Wu, Q.; Mao, Y. Phenolic Resin Gel Suitable for Medium-Temperature and High-Salinity Reservoirs. J. Mol. Liq. 2022, 364, 119887–119898. DOI: 10.1016/j.molliq.2022.119887.
  • Sydansk, R. A Newly Developed Chromium (Lll) Gel Technology. SPE Reserv. Eng. 1990, 5, 346–352. DOI: 10.2118/19308-PA.
  • Azimi Dijvejin, Z.; Ghaffarkhah, A.; Sadeghnejad, S.; Vafaie Sefti, M. Effect of Silica Nanoparticle Size on the Mechanical Strength and Wellbore Plugging Performance of SPAM/Chromium (III) Acetate Nanocomposite Gels. Polym. J. 2019, 51, 693–707. 019-0178-3 DOI: 10.1038/s41428-.
  • Zhang, Y.; Cai, H.; Li, J.; Cheng, R.; Wang, M.; Bai, X.; Liu, Y.; Sun, Y.; Dai, C. Experimental Study of Acrylamide Monomer Polymer Gel for Water Plugging in Low Temperature and High Salinity Reservoir. Energy Sources. Part A 2018, 40, 2948–2959. DOI: 10.1080/15567036.2018.1514436.
  • Gu, C.; Lv, Y.; Fan, X.; Zhao, C.; Dai, C.; Zhao, G. Study on Rheology and Microstructure of Phenolic Resin Crosslinked Nonionic Polyacrylamide (NPAM) Gel for Profile Control and Water Shutoff Treatments. J. Petrol Sci. Eng. 2018, 169, 546–552. DOI: 10.1016/j.petrol.2018.06.016.
  • Amiri, S. Synthesis and Characterization of Acrylamide/(3-Acrylamidopropyl) Trimethyl Ammonium Chloride Solution and Acrylamide/Na-Montmorillonite Hydrogels via Controlled Radical Polymerization for Use as High-Temperature and High-Salinity Oil Reservoirs. Polym. Bull. 2019, 76, 683–699. DOI: 10.1007/s00289-018-2394-y.
  • Dong, S.; He, L.; Li, L.; Wu, Y.; Wang, X. Investigation of Polyvinyl Alcohol–Phenolic Aldehyde–Polyacrylamide Gel for the Application in Saline Oil Reservoirs for Profile Modification. Energy Fuel. 2023, 37, 13710–13720. DOI: 10.1021/acs.energyfuels.3c02178.
  • Ma, L.; Wang, S.; Long, Y. 2017 Novel Environmentally Benign Hydrogel: Nano-Silica Hybrid Hydrolyzed Polyacrylamide/Polyethyleneimine Gel System for Conformance Improvement in High Temperature High Salinity Reservoir. Abu Dhabi International Petroleum Exhibition & Conference. One Petro. DOI: 10.2118/188654-MS.
  • Sheidaie, A.; Fahimpour, J.; Sharifi, M. Experimental Investigation of Low-Concentrated Nanocomposite Polymer Gels for Water Shutoff Treatment under Reservoir Conditions. SPE J. 2022, 27, 2390–2407. DOI: 10.2118/209604-PA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.