40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gamma radiation-induced grafting of C5 aliphatic petroleum resin onto ethylene-co-vinyl acetate copolymer for improving crude oil flowability

, , , , &
Received 29 Nov 2023, Accepted 30 Mar 2024, Published online: 19 Apr 2024

References

  • Ibrahim, R. I.; Odah, M. K.; Al-Mufti, A. Improvement of Mechanical Properties of Oil Well Cement by Incorporate Nano-CaCO3 Prepared from Eggshell Waste. IOP Conf Series: Mater. Scie. Eng. 2019, 579, 012054. DOI: 10.1088/1757-899X/579/1/012054.
  • Yao, B.; Li, C.; Yang, F.; Sun, G.; Xia, X.; Ashmawy, A. M.; Zeng, H. Advances in and Perspectives on Strategies for Improving the Flowability of Waxy Oils. Energy Fuels 2022, 36, 7987–8025. DOI: 10.1021/acs.energyfuels.2c01295.
  • Li, H.; Wang, X.; Ma, C.; Lu, Y.; Han, S.; Chen, C.; Zhang, J. Effect of Electrical Treatment on Structural Behaviors of Gelled Waxy Crude Oil. Fuel 2019, 253, 647–661. DOI: 10.1016/j.fuel.2019.05.001.
  • Jennings, D. W.; Breitigam, J. Paraffin Inhibitor Formulations for Different Application Environments: From Heated Injection in the Desert to Extreme Cold Arctic Temperatures. Energy Fuels 2010, 24, 2337–2349. DOI: 10.1021/ef900972u.
  • Ma, C.; Zhang, J.; Feng, K.; Li, Z.; Chen, C.; Huang, Q.; Lu, Y. Influence of Asphaltenes on the Performance of Electrical Treatment of Waxy Oils. J. Pet. Sci. Eng. 2019, 180, 31–40. DOI: 10.1016/j.petrol.2019.05.020.
  • Hoffmann, R.; Amundsen, L. Influence of Wax Inhibitor on Fluid and Deposit Properties. J. Pet. Sci. Eng. 2013, 107, 12–17. DOI: 10.1016/j.petrol.2013.04.009.
  • Ridzuan, N.; Adam, F.; Yaacob, Z. International Petroleum Technology Conference, IPTC-17883-MS, 2014, DOI: 10.2523/IPTC-17883-MS.
  • Yang, F.; Zhao, Y.; Sjöblom, J.; Li, C.; Paso, K. G. Polymeric Wax Inhibitors and Pour Point Depressants for Waxy Crude Oils: A Critical Review. J. Dispers. Sci. Technol. 2015, 36, 213–225. DOI: 10.1080/01932691.2014.901917.
  • Alves, B. F.; Pereira, P. H.; Rita de Cássia, P. N.; Lucas, E. F. Influence of Solvent Solubility Parameter on the Performance of EVA Copolymers as Pour Point Modifiers of Waxy Model-Systems. Fuel 2019, 258, 116196. DOI: 10.1016/j.fuel.2019.116196.
  • Yao, B.; Li, C.; Zhang, X.; Yang, F.; Sun, G.; Zhao, Y. Performance Improvement of the Ethylene-Vinyl Acetate Copolymer (EVA) Pour Point Depressant by Small Dosage of the Amino-Functionalized Polymethylsilsesquioxane (PAMSQ) Microsphere. Fuel 2018, 220, 167–176. DOI: 10.1016/j.fuel.2018.01.032.
  • Yang, F.; Yao, B.; Li, C.; Shi, X.; Sun, G.; Ma, X. Performance Improvement of the Ethylene-Vinyl Acetate Copolymer (EVA) Pour Point Depressant by Small Dosages of the Polymethylsilsesquioxane (PMSQ) Microsphere: An Experimental Study. Fuel 2017, 207, 204–213. DOI: 10.1016/j.fuel.2017.06.083.
  • Yang, S.; Li, C.; Yang, F.; Li, X.; Sun, G.; Yao, B. Effect of Polyethylene-Vinyl Acetate Pour Point Depressants on the Flow Behavior of Degassed Changqing Waxy Crude Oil before/after scCO2 Extraction. Energy Fuels 2019, 33, 4931–4938. DOI: 10.1021/acs.energyfuels.9b00561.
  • Li, N.; Mao, G.; Shi, X.; Tian, S.; Liu, Y. Advances in the Research of Polymeric Pour Point Depressant for Waxy Crude Oil. J. Dispers. Sci. Technol. 2018, 39, 1165–1171. DOI: 10.1080/01932691.2017.1385484.
  • Liu, T.; Fang, L.; Liu, X.; Zhang, X. Preparation of a Kind of Reactive Pour Point Depressant and Its Action Mechanism. Fuel 2015, 143, 448–454. DOI: 10.1016/j.fuel.2014.11.094.
  • Yao, B.; Li, C.; Yang, F.; Zhang, X.; Mu, Z.; Sun, G.; Zhao, Y. Ethylene–Vinyl Acetate Copolymer and Resin-Stabilized Asphaltenes Synergistically Improve the Flow Behavior of Model Waxy Oils. 1. Effect of Wax Content and the Synergistic Mechanism. Energy Fuels 2018, 32, 1567–1578. DOI: 10.1021/acs.energyfuels.7b03657.
  • da Silva, C. X.; Álvares, D. R.; Lucas, E. F. New Additives for the Pour Point Reduction of Petroleum Middle Distillates. Energy Fuels 2004, 18, 599–604. DOI: 10.1021/ef030132o.
  • Kurniawan, M.; Ruwoldt, J.; Norrman, J.; Paso, K. G. Influence of Wax Inhibitor Molecular Weight on Solution Crystallization and Rheology of Monodisperse Waxes. Energy Fuels 2021, 35, 7666–7680. DOI: 10.1021/acs.energyfuels.0c04187.
  • Mansur, C. R.; Lima, A. F.; Spinelli, L. S.; González, G.; Lucas, E. F. Is There Any Relation between the Solubility of a Polymeric Additive and Its Performance as a Pour Point Reducer? Macromol. Symp. 2006, 245-246, 250–259. DOI: 10.1002/masy.200651335.
  • Ren, Y.; Chen, Z.; Du, H.; Fang, L.; Zhang, X. Preparation and Evaluation of Modified Ethylene–Vinyl Acetate Copolymer as Pour Point Depressant and Flow Improver for Jianghan Crude Oil. Ind. Eng. Chem. Res. 2017, 56, 11161–11166. DOI: 10.1021/acs.iecr.7b02929.
  • Woods, R. J.; Pikaev, A. K. 1993 Applied Radiation Chemistry: Radiation Processing. John Wiley & Sons: New York.
  • Makuuchi, K.; Cheng, S. 2012 Radiation Processing of Polymer Materials and Its Industrial Applications. John Wiley & Sons: Hoboken.
  • Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M. S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers (Basel) 2020, 12, 2877. DOI: 10.3390/polym12122877.
  • Walo, M. Radiation-Induced Grafting. In Applications of Ionizing Radiation in Materials Processing; 2017; Vol. 1, pp 193–210. ISBN 978-83-933935-9-6.
  • Ghobashy, M. M. Chapter 12 – The Application of Natural Polymer-Based Hydrogels for Agriculture. In Hydrogels Based on Natural Polymers; Elsevier, 2020, pp 329–356, DOI: 10.1016/B978-0-12-816421-1.00013-6.
  • Erizal, E.; Abbas, B.; Sukaryo, S. G.; Barleany, D. R. Synthesis and Characterization Superabsorbent Hydrogels of Partially Neutralized Acrylic Acid Prepared Using Gamma Irradiation: Swelling and Thermal Behavior. Indones. J. Chem 2015, 15, 281–287. DOI: 10.22146/ijc.21197.
  • Kamal Hossen, M.; Alaul Azim, M.; Sarwaruddin Chowdhury, A.; Dafader, N.; Haque, M.; Akter, F. Characterization of Poly(Vinyl Alcohol) and Poly(Vinyl Pyrrolidone) Co-Polymer Blend Hydrogel Prepared by Application of Gamma Radiation. Polym.-Plast. Technol. Eng. 2008, 47, 662–665. DOI: 10.1080/03602550802129528.
  • Liang, J.; Chang, S.; Feng, N. Effect of C5 Petroleum Resin Content on Damping Behavior, Morphology, and Mechanical Properties of BIIR/BR Vulcanizates. J. Appl. Polym. Sci. 2013, 130, 510–515. DOI: 10.1002/app.39202.
  • Berahman, B.; Dabir, B.; Sadeghpour, S. Simulation of the C5 Aliphatic Petroleum Resins Production Process. Pet. Sci. Technol. 2010, 28, 1277–1286. DOI: 10.1080/10916460903030474.
  • Mun, G. A.; Bekbassov, T.; Beksultanov, Z.; Yermukhambetova, B. B.; Azhgaliyev, B.; Azhgaliyev, N.; Dergunov, S. A. Modified Graft Copolymers Based on Ethylene Vinyl Acetate as Depressants for Waxy Crude Oil and Their Effect on the Rheological Properties of Oil. J. Pet. Sci. Eng. 2022, 213, 110298. DOI: 10.1016/j.petrol.2022.110298.
  • Ren, Y.; Fang, L.; Chen, Z.; Du, H.; Zhang, X. Synthesis and Evaluation of Grafted EVAL as Pour Point Depressant for Waxy Crude Oil. Ind. Eng. Chem. Res. 2018, 57, 8612–8619. DOI: 10.1021/acs.iecr.8b01169.
  • Abdel Maksoud, M. I. A.; Ghobashy, M. M.; Kodous, A. S.; Fahim, R. A.; Osman, A. I.; Al-Muhtaseb, A.; Rooney, D. W.; Mamdouh, M. A.; Nady, N.; Ashour, A. H. Insights on Magnetic Spinel Ferrites for Targeted Drug Delivery and Hyperthermia Applications. Nanotechnol. Rev. 2022, 11, 372–413. DOI: 10.1515/ntrev-2022-0027.
  • Ghobashy, M. M. Effect of Sulfonated Groups on the Proton and Methanol Transport Behavior of Irradiated PS/PEVA Membrane. Int. J. Plast. Technol. 2017, 21, 130–143. DOI: 10.1007/s12588-017-9176-5.
  • Meimoun, J.; Wiatz, V.; Saint‐Loup, R.; Parcq, J.; Favrelle, A.; Bonnet, F.; Zinck, P. Modification of Starch by Graft Copolymerization. Starch‐Stärke 2018, 70, 1600351. DOI: 10.1002/star.201600351.
  • Huang, M.; Shen, X.; Sheng, Y.; Fang, Y. Study of Graft Copolymerization of N-Maleamic Acid-Chitosan and Butyl Acrylate by Gamma-Ray Irradiation. Int. J. Biol Macromol. 2005, 36, 98–102. DOI: 10.1016/j.ijbiomac.2005.04.002.
  • Yu, L.; He, Y.; Bin, L.; Yue’e, F. Study of Radiation‐Induced Graft Copolymerization of Butyl Acrylate onto Chitosan in Acetic Acid Aqueous Solution. J. Appl. Polym. Sci. 2003, 90, 2855–2860. DOI: 10.1002/app.13011.
  • Xie, M.; Chen, F.; Liu, J.; Yang, T.; Yin, S.; Lin, H.; Xue, Y.; Han, S. Synthesis and Evaluation of Benzyl Methacrylate–Methacrylate Copolymers as Pour Point Depressant in Diesel Fuel. Fuel 2019, 255, 115880. DOI: 10.1016/j.fuel.2019.115880.
  • Ghannam, M. T.; Esmail, N. Flow Enhancement of Medium-Viscosity Crude Oil. Pet. Sci. Technol. 2006, 24, 985–999. DOI: 10.1081/LFT-200048166.
  • Nasir, A.; Raza, A.; Tahir, M.; Yasin, T. Free-Radical Graft Polymerization of Acrylonitrile on Gamma Irradiated Graphene Oxide: Synthesis and Characterization. Mater. Chem. Phys. 2020, 246, 122807. DOI: 10.1016/j.matchemphys.2020.122807.
  • Ghobashy, M. M.; Elbarbary, A. M.; Hegazy, D. E.; Maziad, N. A. Radiation Synthesis of pH-Sensitive 2-(Dimethylamino) Ethyl Methacrylate/Polyethylene Oxide/ZnS Nanocomposite Hydrogel Membrane for Wound Dressing Application. J. Drug Deliv. Sci. Technol. 2022, 73, 103399. DOI: 10.1016/j.jddst.2022.103399.
  • Espiritu, R.; Mamlouk, M.; Scott, K. Study on the Effect of the Degree of Grafting on the Performance of Polyethylene-Based Anion Exchange Membrane for Fuel Cell Application. Int. J. Hydrogen Energy. 2016, 41, 1120–1133. DOI: 10.1016/j.ijhydene.2015.10.108.
  • Hidzir, N. M.; Radzali, N. A. M.; Rahman, I. A.; Shamsudin, S. A. Gamma Irradiation-Induced Grafting of 2-Hydroxyethyl Methacrylate (HEMA) onto ePTFE for Implant Applications. Nucl. Eng. Technol. 2020, 52, 2320–2327. DOI: 10.1016/j.net.2020.03.016.
  • Ghobashy, M. M.; Elhady, M. Radiation Crosslinked Magnetized Wax (PE/Fe3O4) Nano Composite for Selective Oil Adsorption. Compos. Commun. 2017, 3, 18–22. DOI: 10.1016/j.coco.2016.12.001.
  • Kaur, I.; Bhalla, T.; Sharma, B. Functionalization of Cotton Fabric Orienting towards Antibacterial Activity. J. Polym. Res. 2011, 18, 347–358. DOI: 10.1007/s10965-010-9424-2.
  • Kaur, I.; Sharma, N.; Kumari, V. Modification of Fiber Properties through Grafting of Acrylonitrile to Rayon by Chemical and Radiation Methods. J. Adv. Res. 2013, 4, 547–557. DOI: 10.1016/j.jare.2012.11.003.
  • Abd El-Sattar, N. E.; El-Hddad, S. E. S.; Ghobashy, M. M.; Zaher, A. A.; El-Adl, K. Nanogel-Mediated Drug Delivery System for Anticancer Agent: PH Stimuli Responsive Poly(Ethylene Glycol/Acrylic Acid) Nanogel Prepared by Gamma Irradiation. Bioorg. Chem. 2022, 127, 105972. DOI: 10.1016/j.bioorg.2022.105972.
  • Hou, J.-Y.; Guo, F.; Hu, Q.; Li, Y.; Hou, Z.-M. Neodymium-Catalyzed Polymerization of C 5 Fraction: Efficient Synthesis of 1,3-Pentadiene-Isoprene Copolymer Rubbers. Chin. J. Polym Sci. 2019, 37, 674–680. DOI: 10.1007/s10118-019-2244-x.
  • Ghobashy, M. M.; Khozemey, E. Sulfonated Gamma‐Irradiated Blend Poly(Styrene/Ethylene‐Vinyl Acetate) Membrane and Their Electrical Properties. Adv. Polym. Technol. 2018, 37, 1249–1255. DOI: 10.1002/adv.21781.
  • Elhady, M.; Ghobashy, M.; Mahmoud, M. Effect of Gamma Irradiation on the Adhesive Property and Antibacterial Activity of Blend Polymer (Abietic acid-EVA). Polym. Polym. Compos. 2021, 29, 138–147. DOI: 10.1177/0967391120904619.
  • A, K.; Mvl, K.; A, A.; Ar, P. Thermal Mechanical and Dielectric Studies on Thin Films of Ethylene Vinyl Acetate Copolymer with Varying Concentration of Vinyl Acetate. Int. J. Chem. Sci. 2018, 16, 296. DOI: 10.21767/0972-768X.1000296.
  • Tarantola, G.; Medri, E.; Splendore, A.; Lo Russo, F.; Matteucci, C.; Minelli, M. Liquid Foam-Ethyl Vinyl Acetate Adhesive Systems for Lining Process of Paintings: Prospects of a User-Friendly, Harmless Alternative to Conventional Products. Polymers (Basel) 2023, 15, 1741. DOI: 10.3390/polym15071741.
  • Alshangiti, D. M.; Ghobashy, M. M.; Alkhursani, S. A.; Shokr, F. S.; Al-Gahtany, S. A.; Madani, M. M. Semi-Permeable Membrane Fabricated from Organoclay/PS/EVA Irradiated by ɣ-Rays for Water Purification from Dyes. J. Mater. Res. Technol. 2019, 8, 6134–6145. DOI: 10.1016/j.jmrt.2019.10.008.
  • Zohuriaan-Mehr, M.; Omidian, H. Petroleum Resins: An Overview. J. Macromol. Sci., Part C: Polym. Rev. 2000, 40, 23–49. DOI: 10.1081/MC-100100577.
  • Wei, Q.; Chen, X.; He, Y.; Fu, J.; Liang, J.; Wei, X.; Wang, L. Ni Nanoparticles Supported on N-Doped Carbon Nanotubes for Efficient Hydrogenation of C5 Hydrocarbon Resins under Mild Conditions. Micropor. Mesopor. Mater. 2022, 333, 111727. DOI: 10.1016/j.micromeso.2022.111727.
  • Xu, C. A.; Qu, Z.; Lu, M.; Meng, H.; Chen, B.; Jiao, E.; Zhang, E.; Wu, K.; Shi, J. Effect of Modified Bamboo Lignin Replacing Part of C5 Petroleum Resin on Properties of Polyurethane/Polysiloxane Pressure-Sensitive Adhesive and Its Application on the Wood Substrate. J. Colloid Interf. Sci. 2021, 602, 394–405. DOI: 10.1016/j.jcis.2021.06.033.
  • Petrova, L.; Abbakumova, N.; Foss, T.; Romanov, G. Structural Features of Asphaltene and Petroleum Resin Fractions. Pet. Chem. 2011, 51, 252–256. DOI: 10.1134/S0965544111040062.
  • Liu, Q.; Yang, J.; Zhang, H.; Sun, H.; Wu, S.; Ge, B.; Wang, R.; Yuan, P. Tuning the Properties of Ni-Based Catalyst via La Incorporation for Efficient Hydrogenation of Petroleum Resin. Chin. J. Chem. Eng. 2022, 45, 41–50. DOI: 10.1016/j.cjche.2021.03.053.
  • Ghobashy, M. M.; Khafaga, M. R. Chemical Modification of Nano Polyacrylonitrile Prepared by Emulsion Polymerization Induced by Gamma Radiation and Their Use for Removal of Some Metal Ions. J. Polym. Environ. 2017, 25, 343–348. DOI: 10.1007/s10924-016-0805-4.
  • Hill, D. J.; Whittaker, A. K. NMR Studies of the Radiation Modification of Polymers. Annu. Rep. NMR Spectrosc. 2002, 46, 1–35.
  • Sae‐Ma, N.; Praserthdam, P.; Panpranot, J.; Chaemchuen, S.; Dokjamp, S.; Suriye, K.; Rempel, G. L. Color Improvment of C9 Hydrocarbon Resin by Hydrogenation over 2% Pd/γ‐Alumina Catalyst: Effect of Degree of Aromatic Rings Hydrogenation. J. Appl. Polym. Sci. 2010, 117, 2862–2869. DOI: 10.1002/app.32189.
  • Park, J.-H.; Kong, W.-S.; Lee, S.-H.; Lee, J. W.; Yoon, H. G.; Lee, B. Y. Characterization and Application of Propylene Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin. Int. J. Adhes. Adhes. 2016, 68, 326–332. DOI: 10.1016/j.ijadhadh.2016.04.002.
  • Craciun, G.; Ighigeanu, D.; Manaila, E.; Stelescu, M. D. Synthesis and Characterization of Poly(Acrylamide-co-Acrylic Acid) Flocculant Obtained by Electron Beam Irradiation. Mat. Res. 2015, 18, 984–993. DOI: 10.1590/1516-1439.008715.
  • Ghobashy, M. M. Ionizing Radiation-Induced Polymerization. In Ionizing Radiation Effects and Applications; InTech, 2018, pp 113, DOI: 10.5772/intechopen.73234.
  • Ehm, C.; Cipullo, R.; Passaro, M.; Zaccaria, F.; Budzelaar, P. H.; Busico, V. Chain Transfer to Solvent in Propene Polymerization with Ti Cp-Phosphinimide Catalysts: Evidence for Chain Termination via Ti–C Bond Homolysis. ACS Catal. 2016, 6, 7989–7993. DOI: 10.1021/acscatal.6b02738.
  • Ehm, C.; Budzelaar, P. H.; Busico, V. Metal–Carbon Bond Strengths Under Polymerization Conditions: 2,1-Insertion as a Catalyst Stress Test. J. Catal. 2017, 351, 146–152. DOI: 10.1016/j.jcat.2017.04.013.
  • Zaccaria, F.; Ehm, C.; Budzelaar, P. H.; Busico, V.; Cipullo, R. Catalyst Mileage in Olefin Polymerization: The Peculiar Role of Toluene. Organometallics 2018, 37, 2872–2879. DOI: 10.1021/acs.organomet.8b00393.
  • Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P. H.; Macchioni, A.; Busico, V.; Ehm, C. Toluene and α-Olefins as Radical Scavengers: Direct NMR Evidence for Homolytic Chain Transfer Mechanism Leading to Benzyl and “Dormant” Titanium Allyl Complexes. Organometallics 2018, 37, 4189–4194. DOI: 10.1021/acs.organomet.8b00755.
  • Ghiotto, F.; Pateraki, C.; Severn, J. R.; Friederichs, N.; Bochmann, M. Rapid Evaluation of Catalysts and MAO Activators by Kinetics: What Controls Polymer Molecular Weight and Activity in Metallocene/MAO Catalysts? Dalton Trans. 2013, 42, 9040–9048. DOI: 10.1039/c3dt00107e.
  • Desert, X.; Carpentier, J.-F.; Kirillov, E. Quantification of Active Sites in Single-Site Group 4 Metal Olefin Polymerization Catalysis. Coord. Chem. Rev. 2019, 386, 50–68. DOI: 10.1016/j.ccr.2019.01.025.
  • Lin, F.; Liu, Z.; Wang, M.; Liu, B.; Li, S.; Cui, D. Chain Transfer to Toluene in Styrene Coordination Polymerization. Angew. Chem. Int. Ed. Engl. 2020, 59, 4324–4328. DOI: 10.1002/anie.201914603.
  • Wang, G.; Zhang, W.; Liang, J.; Chen, G.; Wei, Z.; Zhang, L. Preparation of C 5 Petroleum Resins Using Et 3 NHCl-AlCl 3 as Catalyst. Asian J. Chem. 2013, 25, 2829–2832. DOI: 10.14233/ajchem.2013.14017.
  • Peng, Y.; Liu, J.; Cun, L.; Dai, H. Cationic Polymerization of 1,3-Pentadiene in the Presence of Arenes. Polym. Bull. 1995, 35, 393–397. DOI: 10.1007/BF00297603.
  • Fang, L.; Zhang, X.; Ma, J.; Zhang, B. Investigation into a Pour Point Depressant for Shengli Crude Oil. Ind. Eng. Chem. Res. 2012, 51, 11605–11612. DOI: 10.1021/ie301018r.
  • Taraneh, J. B.; Rahmatollah, G.; Hassan, A.; Alireza, D. Effect of Wax Inhibitors on Pour Point and Rheological Properties of Iranian Waxy Crude Oil. Fuel Process. Technol. 2008, 89, 973–977. DOI: 10.1016/j.fuproc.2008.03.013.
  • Wu, Y.; Ni, G.; Yang, F.; Li, C.; Dong, G. Modified Maleic Anhydride Co-Polymers as Pour-Point Depressants and Their Effects on Waxy Crude Oil Rheology. Energy Fuels 2012, 26, 995–1001. DOI: 10.1021/ef201444b.
  • Ashmawy, A. M.; Yao, B.; Mohamed, M. G.; Elnaggar, E.-S. M.; El-Bahy, S. M.; Hamam, M. F. Allyl Ester-Based Liquid Crystal Flow Improvers for Waxy Crude Oils. J. Dispers. Sci. Technol. 2021, 42, 2199–2209. DOI: 10.1080/01932691.2021.1981367.
  • Ashmawy, A. M.; Elnaggar, E.-S. M.; Mohamed, M. G.; Hamam, M. F. Novel Allyl-Ester-Based Polymers as Flow Improvers for Waxy Crude Oil. CI&CEQ 2021, 27, 395–402. DOI: 10.2298/CICEQ201011008A.
  • Ashmawy, A. M.; Elnaggar, E.-S. M.; Mohamed, M. G.; Hamam, M. C. Preparation and Evaluation of New Liquid Crystal Compounds as Flow Improvers for Waxy Crude Oil. J. Dispers. Sci. Technol. 2022, 43, 206–220. DOI: 10.1080/01932691.2020.1841000.
  • Deka, B.; Sharma, R.; Mandal, A.; Mahto, V. Synthesis and Evaluation of Oleic Acid Based Polymeric Additive as Pour Point Depressant to Improve Flow Properties of Indian Waxy Crude Oil. J. Pet. Sci. Eng. 2018, 170, 105–111. DOI: 10.1016/j.petrol.2018.06.053.
  • Deka, B.; Sharma, R.; Mahto, V. Synthesis and Performance Evaluation of Poly(Fatty Esters-co-Succinic Anhydride) as Pour Point Depressants for Waxy Crude Oils. J. Pet. Sci. Eng. 2020, 191, 107153. DOI: 10.1016/j.petrol.2020.107153.
  • Ghobashy, M. M.; Mousa, S. A.; Siddiq, A.; Nasr, H. M.; Nady, N.; Atalla, A. A. Optimal the Mechanical Properties of Bioplastic Blend Based Algae-(Lactic Acid-Starch) Using Gamma Irradiation and Their Possibility to Use as Compostable and Soil Conditioner. Mater. Today Commun. 2023, 34, 105472. DOI: 10.1016/j.mtcomm.2023.105472.
  • Siddiq, A.; Ghobashy, M.; Mousa, S. A.; Nasr, H.; Atalla, A. A. Impact of Red Algae and Different Gamma Irradiation Doses on the Physicochemical Properties and Biodegradation Rate of EPDM/EVA/TPS Blend. Al-Azhar Bull. Sci. 2020, 31, 47–56. DOI: 10.21608/absb.2020.42125.1085.
  • Sharma, S.; Mahto, V.; Sharma, V. P. Effect of Flow Improvers on Rheological and Microscopic Properties of Indian Waxy Crude Oil. Ind. Eng. Chem. Res. 2014, 53, 4525–4533. DOI: 10.1021/ie403050y.
  • Eke, W. I.; Kyei, S. K.; Achugasim, O.; Ajienka, J. A.; Akaranta, O. Pour Point Depression and Flow Improvement of Waxy Crude Oil Using Polyethylene Glycol Esters of Cashew Nut Shell Liquid. Appl. Petrochem. Res. 2021, 11, 199–208. DOI: 10.1007/s13203-021-00271-1.
  • Eke, W. I.; Kyei, S. K.; Ajienka, J.; Akaranta, O. Effect of Bio-Based Flow Improver on the Microscopic and Low-Temperature Flow Properties of Waxy Crude Oil. J. Petrol. Explor. Prod. Technol. 2021, 11, 711–724. DOI: 10.1007/s13202-020-01078-x.
  • Hefny, A.; Ashmawy, A.; Elazabawy, S.; Abdallah, A.; Elnaggar, E. S. Novel Homo-and Co-Polymers Based on 7-Methacryloyloxy-4-Methylcoumarin: Synthesis, Antimicrobial Activity, Pour-Point Depressants and Their Effects on the Rheology of the Waxy Crude Oil. Egypt. J. Chem. 2021, 0, 0–0. DOI: 10.21608/ejchem.2021.56228.3206.
  • Lapuerta, M.; González-García, I.; Céspedes, I.; Estévez, C.; Bayarri, N. Improvement of Cold Flow Properties of a New Biofuel Derived from Glycerol. Fuel 2019, 242, 794–803. DOI: 10.1016/j.fuel.2019.01.066.
  • Atabani, A.; Shobana, S.; Mohammed, M.; Uğuz, G.; Kumar, G.; Arvindnarayan, S.; Aslam, M.; Ala’a, H. Integrated Valorization of Waste Cooking Oil and Spent Coffee Grounds for Biodiesel Production: Blending with Higher Alcohols, FT–IR, TGA, DSC and NMR Characterizations. Fuel 2019, 244, 419–430. DOI: 10.1016/j.fuel.2019.01.169.
  • Venkatesan, R.; Östlund, J.-A.; Chawla, H.; Wattana, P.; Nydén, M.; Fogler, H. S. The Effect of Asphaltenes on the Gelation of Waxy Oils. Energy Fuels 2003, 17, 1630–1640. DOI: 10.1021/ef034013k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.