19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of surfactants on Fe2+ mediated oxidative decolorization of Acid Red 13 by peroxydisulfate

, , , &
Received 05 Feb 2024, Accepted 19 Apr 2024, Published online: 01 May 2024

References

  • Prakash, S.; Verma, A. K. Arsenic: It’s Toxicity and Impact on Human Health. IJBI. 2021, 03, 38–47. DOI: 10.46505/IJBI.2021.3102.
  • Dahiya, V. Heavy Metal Toxicity of Drinking Water: A Silent Killer. GSC. Bio. Pharm. Sci. 2022, 19, 20–25. DOI: 10.30574/gscbps.2022.19.1.0107.
  • Sharma, R.; Agrawal, P. R.; Kumar, R.; Gupta, G. Biosorption for Eliminating Inorganic Contaminants (IOCs) from Wastewater. In Biosorption for Wastewater Contaminants. John Wiley & Sons Ltd.: Hoboken, NJ, 2022; pp 42–62. DOI: 10.1002/9781119737629.ch3.
  • Yasasve, M.; Manjusha, M.; Manojj, D.; Hariharan, N.; Preethi, P. S.; Asaithambi, P.; Karmegam, N.; Saravanan, M. Unravelling the Emerging Carcinogenic Contaminants from Industrial Waste Water for Prospective Remediation by Electrocoagulation–A Review. Chemosphere. 2022, 307, 136017. DOI: 10.1016/j.chemosphere.2022.136017.
  • Ardila-Leal, L. D.; Poutou-Piñales, R. A.; Pedroza-Rodríguez, A. M.; Quevedo-Hidalgo, B. E. A Brief History of Colour the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules. 2021, 26, 3813. DOI: 10.3390/molecules26133813.
  • Dassanayake, R. S.; Acharya, S.; Abidi, N. Recent Advances in Biopolymer-Based Dye Removal Technologies. Molecules. 2021, 26, 4697. DOI: 10.1002/tcr.202000153.
  • Elgarahy, A.; Elwakeel, K.; Mohammad, S.; Elshoubaky, G. A Critical Review of Biosorption of Dyes Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Chem. Eng. Technol. 2021, 4, 100209. DOI: 10.1016/j.clet.2021.100209.
  • Selvaraj, V.; Karthika, T. S.; Mansiya, C.; Alagar, M. An Over Review on Recently Developed Techniques Mechanisms and Intermediate Involved in the Advanced Azo Dye Degradation for Industrial Applications. J. Mol. Struct. 2021, 1224, 129195. DOI: 10.1016/j.molstruc.2020.129195.
  • Ikram, M.; Zahoor, M.; Batiha, G. E. S. Biodegradation and Decolorization of Textile Dyes by Bacterial Strains: A Biological Approach for Wastewater Treatment. Z. fur. Phys. Chem. 2021, 235, 1381–1393. DOI: 10.1515/zpch-2020-1708.
  • Hamzezadeh, A.; Rashtbari, Y.; Afshin, S.; Morovati, M.; Vosoughi, M. Application of Low-Cost Material for Adsorption of Dye from Aqueous Solution. J. Environ. Anal. Chem. 2022, 102, 254–269. DOI: 10.1080/03067319.2020.1720011.
  • Rathi, B. S.; Kumar, P. S.; Vo, D. V. N. Critical Review on Hazardous Pollutants in Water Environment: Occurrence Monitoring Fate Removal Technologies and Risk Assessment. Sci. Total Environ. 2021, 797, 149134. DOI: 10.1016/j.scitotenv.2021.149134.
  • Kutluay, S. Excellent Adsorptive Performance of Novel Magnetic Nano-Adsorbent Functionalized with 8-Hydroxyquinoline-5-Sulfonic Acid for the Removal of Volatile Organic Compounds (BTX) Vapors. Fuel. 2021, 287, 119691. DOI: 10.1016/j.fuel.2020.119691.
  • Goswami, M. K.; Srivastava, A.; Dohare, R. K.; Tiwari, A. K.; Srivastava, A. Recent Advances on Conducting Polymer Based Magnetic Nanosorbents for Dyes and Heavy Metal Removal: Fabrication Applications and Perspective. Environ. Sci. Pollut. Res. 2023, 30, 73031–73060. DOI: 10.1007/s11356-023-27458-4.
  • Sudha, M.; Saranya, A.; Selvakumar, G. Microbial Degradation of Azo Dyes: A Review. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 670–690. DOI: 10.3390/ijerph19084740.
  • Baban, A.; Yediler, A.; Lienert, D.; Kemerdere, N.; Kettrup, A. Ozonation of High Strength Segregated Effluents from a Woollen Textile Dyeing and Finishing Plant. Dyes Pigments. 2023, 58, 93–98. DOI: 10.1016/S0143-7208(03)00047-0.
  • Hassani, A.; Çelikdağ, G.; Eghbali, P.; Sevim, M.; Karaca, S.; Metin, Ö. Heterogeneous Sono-Fenton-like Process Using Magnetic Cobalt Ferrite-Reduced Graphene Oxide (CoFe2O4-rGO) Nanocomposite for the Removal of Organic Dyes from Aqueous Solution. Ultrason. Sonochem. 2018, 40, 841–852. DOI: 10.1016/j.ultsonch.2017.08.026.
  • Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. DOI: 10.1007/s41101-017-0031-5.
  • Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. DOI: 10.1021/acs.est.9b07082.
  • Xu, X. R.; Li, X. Z. Degradation of Azo Dye Orange G in Aqueous Solutions by Persulfate with Ferrous Ion. Sep. Purif. Technol. 2010, 72, 105–111. DOI: 10.1016/j.seppur.2010.01.012.
  • Wang, P.; Yang, S.; Shan, L.; Niu, R.; Shao, X. Involvements of Chloride Ion in Decolorization of Acid Orange 7 by Activated Peroxydisulfate or Peroxymonosulfate Oxidation. J. Environ. Sci. (China). 2011, 23, 1799–1807. DOI: 10.1016/s1001-0742(10)60620-1.
  • Ahmadi, M.; Behin, J.; Mahnam, A. R. Kinetics and Thermodynamics of Peroxydisulfate Oxidation of Reactive Yellow 84. J. Saudi. Chem. Soc. 2016, 20, 644–650. DOI: 10.1016/j.jscs.2013.07.004.
  • Zhang, H.; Zhang, J.; Zhang, C.; Liu, F.; Zhang, D. Degradation of C.I. Acid Orange 7 by the Advanced Fenton Process in Combination with Ultrasonic Irradiation. Ultrason. Sonochem. 2009, 16, 325–330. DOI: 10.1016/j.ultsonch.2008.09.005.
  • Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Sulfate Radical-Based Ferrous–Peroxymonosulfate Oxidative System for PCBs Degradation in Aqueous and Sediment Systems. Appl. Catal. B. 2009, 85, 171–179. DOI: 10.1016/j.apcatb.2008.07.010.
  • Gayathri, P.; Praveena Juliya Dorathi, R.; Palanivelu, K. Sonochemical Degradation of Textile Dyes in Aqueous Solution Using Sulphate Radicals Activated by Immobilized Cobalt Ions. Ultrason. Sonochem. 2010, 17, 566–571. DOI: 10.1016/j.ultsonch.2009.11.019.
  • Liu, L.; Yang, C.; Tan, W.; Wang, Y. Degradation of Acid Red 73 by Activated Persulfate in a Heat/Fe3O4@AC System with Ultrasound Intensification. ACS Omega. 2020, 5, 13739–13750. DOI: 10.1021/acsomega.0c00903.
  • Holkar, C. R.; Jadhav, A. J.; Pinjari, D. V.; Mahamuni, N. M.; Pandit, A. B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manage. 2016, 182, 351–366. DOI: 10.1016/j.jenvman.2016.07.090.
  • Matzek, L. W.; Carter, K. E. Activated Persulfate for Organic Chemical Degradation: A Review. Chemosphere. 2016, 151, 178–188. DOI: 10.1016/j.chemosphere.2016.02.055.
  • Al-Thabaiti, N. S.; AlSulami, Q. A.; Khan, Z. Role of Ionic Surfactants on the Activation of K2S2O8 for the Advanced Oxidation Processes. J. Mol. Liq. 2023, 369, 120837. DOI: 10.1016/j.molliq.2022.120837.
  • Ewais, H. A.; Basaleh, A. S.; Al Angari, Y. M. Kinetic Studies on the Persulfate Oxidation of Methylene Blue in the Absence and Presence of Silver(I) as a Catalyst in Aqueous and Micellar Media. Int. J. Chem. Kinet. 2023, 55, 271–280. DOI: 10.1002/kin.21634.
  • Ji, Q.; Li, J.; Xiong, Z.; Lai, B. Enhanced Reactivity of Microscale Fe/Cu Bimetallic Particles mFe/Cu with Persulfate PS for p-Nitrophenol PNP Removal in Aqueous Solution. Chemosphere. 2017, 172, 10–20. DOI: 10.1016/j.chemosphere.2016.12.128.
  • Devi, P.; Das, U.; Dalai, A. K. In-Situ Chemical Oxidation: Principle and Applications of Peroxide and Persulfate Treatments in Wastewater Systems. Sci. Total Environ. 2016, 571, 643–657. DOI: 10.1016/j.scitotenv.2016.07.032.
  • Boczkaj, G.; Fernandes, A. Wastewater Treatment by means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. DOI: 10.1016/j.cej.2017.03.084.
  • Wang, Z.; Shao, Y.; Gao, N.; Lu, X.; An, N. Degradation of Diethyl Phthalate DEP by UV/Persulfate: An Experiment and Simulation Study of Contributions by Hydroxyl and Sulfate Radicals. Chemosphere. 2018, 193, 602–610. DOI: 10.1016/j.chemosphere.2017.11.075.
  • Ferkous, H.; Merouani, S.; Hamdaoui, O.; Pétrier, C. Persulfate-Enhanced Sonochemical Degradation of Naphthol Blue Black in Water: Evidence of Sulfate Radical Formation. Ultrason. Sonochem. 2017, 34, 580–587. DOI: 10.1016/j.ultsonch.2016.06.027.
  • Zaheer, Z.; Al-Shehri, A. S.; Alsudairi, A. M.; Kosa, S. A. Silver-Ruthenium Bimetallic Nanoparticles as Sacrificial Heterogeneous Persulfate Activator in Situ Chemical Oxidation of Dye. J. Mol. Liq. 2023, 377, 121549. DOI: 10.1016/j.molliq.2023.121549.
  • Al-Balawi, A. M.; Zaheer, Z.; Kosa, S. A. Silver-Platinum Bimetallic Nanoparticles as Heterogeneous Persulfate Activator for the Oxidation of Malachite Green. Arab. J. Chem. 2023, 16, 104863. DOI: 10.1016/j.arabjc.2023.104863.
  • Hejazi, S. A.; Zaheer, Z.; Kosa, S. A. Silver-Osmium Core-Shell Nanoparticles: Synthesis and Heterogeneous Persulfate Activator. Mater. Chem. Phys. 2023, 305, 127927. DOI: 10.1016/j.matchemphys.2023.127927.
  • Hejazi, S. A.; Zaheer, Z.; Kosa, S. A. Plasmonic Osmium Hydrosols: Preparation, Characterization, and Properties. J. Saudi Chem. Soc. 2023, 27, 101651. DOI: 10.1016/j.jscs.2023.101651.
  • Kodavatiganti, S.; Bhat, A. P.; Gogate, P. R. Intensified Degradation of Acid Violet 7 Dye Using Ultrasound Combined with Hydrogen Peroxide Fenton and Persulfate. Sep. Purif. Technol. 2021, 279, 119673. DOI: 10.1016/j.seppur.2021.119673.
  • IIeri, B. Sono-Assisted Adsorption of Acid Violet 7 and Basic Violet 10 Dyes from Aqueous Solutions: Evaluation of Isotherm and Kinetic Parameters. Environ. Eng. Res. 2022, 27, 200287. DOI: 10.4491/eer.2020.287.
  • Merrad, S.; Abbas, M.; Trari, M. Adsorption of Malachite Green onto Walnut Shells: Kinetics, Thermodynamic, and Regeneration of the Adsorbent by Chemical Process. Fibers Polym. 2013, 24, 1067–1081. DOI: 10.1007/s12221-023-00025-x.
  • Panizza, M.; Cerisola, G. Electro-Fenton Degradation of Synthetic Dyes. Water Res. 2009, 43, 339–344. DOI: 10.1016/j.watres.2008.10.028.
  • Krishnakumar, B.; Swaminathan, M. Influence of Operational Parameters on Photocatalytic Degradation of a Genotoxic Azo Dye Acid Violet 7 in Aqueous ZnO Suspensions. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 81, 739–744. DOI: 10.1016/j.saa.2011.07.019.
  • Yalçın, Ş.; Kara, A. Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye with Poly(Ethylene Glycol Dimethacrylate-2-Vinyl Pyridine)-TiO2 Photocatalytic Polymer Microbeads. J. Nat. App. Sci. 2022, 26, 115–121. DOI: 10.19113/sdufenbed.982112.
  • Chrystiane, N. B.; Maiara, B. F.; Suzana, M. L. O. M.; Elaine, C. M. M. S.; José, J. L. L.; Soliu, O. G.; Carlos, A. M. Electrochemical Oxidation of Acid Violet 7 Dye by Using Si/BDD and Nb/BDD Electrodes. J. Electrochem. Soc. 2018, 165, 250–255. DOI: 10.1149/2.1111805jes.
  • Wawrzkiewicz, M.; Kotowska, U.; Sokół, A. Purification of Textile Effluents Containing C.I. Acid Violet 1: Adsorptive Removal versus Hydrogen Peroxide and Peracetic Acid Based Advanced Oxidation. Processes. 2021, 9, 9, 1911. DOI: 10.3390/pr9111911.
  • Lakshmi, N. J.; Parag, R.; Gogate Aniruddha, B. P. Treatment of Acid Violet 7 Dye Containing Effluent Using the Hybrid Approach Based on Hydrodynamic Cavitation. Process. Saf. Environ. Pro. 2021, 153, 178–191. DOI: 10.1016/j.psep.2021.07.023.
  • Wang, Q.; Liang, L.; Xi, F.; Tian, G.; Mao, Q.; Meng, X. Adsorption of Azo Dye Acid Red 73 onto Rice Wine Lees: Adsorption Kinetics and Isotherms. Adv. Mater. Sci. Eng. 2020, 2020, 1–8. DOI: 10.1155/2020/3469579.
  • Alemu, A.; Kerie, E. Removal of Acid Yellow 17 Dye from Aqueous Solutions Using Activated Water Hyacinth (Eichhornia Crassipes). Water Pract. Technol. 2022, 17, 1294–1304. DOI: 10.2166/wpt.2022.063.
  • Hamidi, F.; Dehghani, M. H.; Kasraee, M.; Salari, M.; Shiri, L.; Mahvi, A. H. Acid Red 18 Removal from Aqueous Solution by Nanocrystalline Granular Ferric Hydroxide (GFH); Optimization by Response Surface Methodology & Genetic-Algorithm. Sci. Rep. 2022, 12, 4761. DOI: 10.1038/s41598-022-08769-x.
  • Najafi Chaleshtori, A.; Meghaddam, F. M.; Sadeghi, M.; Rahimi, R.; Hemati, S.; Ahmadi, A, Shahrekord University of Medical Sciences. Removal of Acid Red 18 (Azo-Dye) from Aqueous Solution by Adsorption onto Activated Charcoal Prepared from Almond Shell. JESAM. 2017, 20, 9–16. DOI: 10.47125/jesam/2017_2/02.
  • Shi, W.; Yan-Yun, Z.; Qiang, G.; Wen-Jun, L.; Hua, X.; Chenggang, Z. Highly Efficient Removal of Acid Red 18 from Aqueous Solution by Magnetically Retrievable Chitosan/Carbon Nanotube: Batch Study, Isotherms, Kinetics, and Thermodynamics. J. Chem. Eng. Data. 2013, 59, 39–51. DOI: 10.1021/je400700c.
  • Sun, L.; Zhou, Q.; Mao, J.; Ouyang, X.; Yuan, Z.; Song, X.; Gong, W.; Mei, S.; Xu, W. Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets. Appl. Sci. 2022, 12, 3574. DOI: 10.3390/app12073574.
  • Das, B.; Kumar, B.; Begum, W.; Bhattarai, A.; Mondal, M. H.; Saha, B. Comprehensive Review on Applications of Surfactants in Vaccine Formulation Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure Due to COVID-19. Chem. Africa. 2022, 5, 459–480. DOI: 10.1007/s42250-022-00345-0.
  • Zahed, M. A.; Matinvafa, M. A.; Azari, A.; Mohajeri, L. Biosurfactant a Green and Effective Solution for Bioremediation of Petroleum Hydrocarbons in the Aquatic Environment. Discov. Water. 2022, 2, 5. DOI: 10.1007/s43832-022-00013-x.
  • Karimi, M. A.; Mozaheb, M. A.; Hatefi-Mehrjardi, A.; Tavallali, H.; Attaran, A. M.; Shamsi, R. A New Simple Method for Determining the Critical Micelle Concentration of Surfactants Using Surface Plasmon Resonance of Silver Nanoparticles. J. Anal. Sci. Technol. 2015, 6, 8. DOI: 10.1186/s40543-015-0077-y.
  • Alam, M. S.; Ragupathy, R.; Mandal, A. B. The Self-Association and Mixed Micellization of an Anionic Surfactant, Sodium Dodecyl Sulfate, and a Cationic Surfactant, Cetyltrimethylammonium Bromide: Conductometric, Dye Solubilization, and Surface Tension Studies. J. Dis. Sci. Tech. 2016, 37, 1645–1654. DOI: 10.1080/01932691.2015.1120677.
  • Hoque, M. A.; Mahbub, S.; Rub, M. A.; Rana, S.; Khan, M. A. Experimental and Theoretical Investigation of Micellization Behavior of Sodium Dodecyl Sulfate with Cetyltrimethylammonium Bromide in Aqueous/Urea Solution at Various Temperatures. Korean J. Chem. Eng. 2018, 35, 2269–2282. DOI: 10.1007/s11814-018-0120-y.
  • Mahbub, S.; Rub, M. A.; Hoque, M. A.; Khan, M. A.; Kumar, D. Micellization Behavior of Cationic and Anionic Surfactant Mixtures at Different Temperatures: Effect of Sodium Carbonate and Sodium Phosphate Salts. J. Phys. Organic Chem. 2019, 32, e3967. DOI: 10.1002/poc.3967.
  • Zana, R.; Lévy, H.; Danino, D.; Talmon, Y.; Kwetkat, K. Mixed Micellization of Cetyltrimethylammonium Bromide and an Anionic Dimeric (Gemini) Surfactant in Aqueous Solution. Langmuir. 1997, 13, 402–408. DOI: 10.1021/la9606963.
  • Aleboyeh, A.; Olya, M. E.; Aleboyeh, H. Electrical Energy Determination for an Azo Dye Decolorization and Mineralization by UV/H2O2 Advanced Oxidation Process. Chem. Eng. J. 2018, 137, 518–524. DOI: 10.1016/j.cej.2007.05.016.
  • Criquet, J.; Karpel Vel Leitner, N. Degradation of Acetic Acid with Sulfate Radical Generated by Persulfate Ions Photolysis. Chemosphere. 2009, 77, 194–200. DOI: 10.1016/j.chemosphere.2009.07.040.
  • Cui, X.; Mao, S.; Liu, M.; Yuan, H.; Du, Y. Mechanism of Surfactant Micelle Formation. Langmuir. 2008, 24, 10771–10775. DOI: 10.1021/la801705y.
  • Goia, D. V.; Matijević, E. Preparation of Monodispersed Metal Particles. New J. Chem. 1998, 22, 1203–1215. DOI: 10.1039/a709236i.
  • Khan, Z.; Raju; Kabir-ud-Din. Kinetics Mechanism and Cloud Point Measurements in the Oxidative Degradation of Non-Ionic Triton X-100 Surfactant in Acidic Permanganate Solutions. Colloid Polym. Sci. 2005, 284, 26–35. DOI: 10.1007/s00396-005-1326-1.
  • Shah, D. O. Micelles Microemulsions and Monolayers Marcel Dekker New York. 1998. DOI: 10.1201/9780203747339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.