15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and in vitro–in vivo evaluation of ligand appended isoniazid loaded nanoparticulate systems for the treatment of tuberculosis

, , , , , & show all
Received 20 Nov 2023, Accepted 19 Apr 2024, Published online: 05 May 2024

References

  • Global Tuberculosis. Programme. https://www.who.int/teams/global-tuberculosis-programme/tb-reports. (accessed Oct 18, 2023).
  • Sosnik, A.; Carcaboso, Á. M.; Glisoni, R. J.; Moretton, M. A.; Chiappetta, D. A. New Old Challenges in Tuberculosis: Potentially Effective Nanotechnologies in Drug Delivery. Adv. Drug Deliv. Rev. 2010, 62, 547–559. DOI: 10.1016/j.addr.2009.11.023.
  • Squibb, B.; Index, M. Isoniazid. Tuberculosis. 2008, 88, 112–116. DOI: 10.1016/S1472-9792(08)70011-8.
  • The Merck Index Online. Chemicals, Drugs and Biologicals. https://merckindex.rsc.org/. (accessed Oct 18, 2023).
  • Rohit, B.; Pal, K. I. A Method to Prepare Solid Lipid Nanoparticles with Improved Entrapment Efficiency of Hydrophilic Drugs. CNANO. 2013, 9, 211–220. DOI: 10.2174/1573413711309020008.
  • Metushi, I. G.; Cai, P.; Zhu, X.; Nakagawa, T.; Uetrecht, J. P. A Fresh Look at the Mechanism of Isoniazid-Induced Hepatotoxicity. Clin. Pharmacol. Ther. 2011, 89, 911–914. DOI: 10.1038/clpt.2010.355.
  • Maryam, S.; Bhatti, A. S. A.; Shahzad, A. W. Protective Effects of Silymarin in Isoniazid Induced Hepatotoxicity in Rabbits. Ann. King Edward Med. Univ. 1970, 16, 43.
  • Chaudhary, S.; Garg, T.; Murthy, R. S. R.; Rath, G.; Goyal, A. K. Recent Approaches of Lipid-Based Delivery System for Lymphatic Targeting via Oral Route. J. Drug Target. 2014, 22, 871–882. DOI: 10.3109/1061186X.2014.950664.
  • Trevaskis, N. L.; Charman, W. N.; Porter, C. J. H. Lipid-Based Delivery Systems and Intestinal Lymphatic Drug Transport: A Mechanistic Update. Adv. Drug Deliv. Rev. 2008, 60, 702–716. DOI: 10.1016/j.addr.2007.09.007.
  • Porter, C. J. H.; Trevaskis, N. L.; Charman, W. N. Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nat. Rev. Drug Discov. 2007, 6, 231–248. DOI: 10.1038/nrd2197.
  • Varshosaz, J.; Minayian, M.; Moazen, E. Enhancement of Oral Bioavailability of Pentoxifylline by Solid Lipid Nanoparticles. J. Liposome Res. 2010, 20, 115–123. DOI: 10.3109/08982100903161456.
  • Shete, H.; Patravale, V. Long Chain Lipid Based Tamoxifen NLC. Part I: Preformulation Studies, Formulation Development and Physicochemical Characterization. Int. J. Pharm. 2013, 454, 573–583. DOI: 10.1016/j.ijpharm.2013.03.034.
  • Chokshi, N. V.; Khatri, H. N.; Patel, M. M. Formulation, Optimization, and Characterization of Rifampicin-Loaded Solid Lipid Nanoparticles for the Treatment of Tuberculosis. Drug Dev. Ind. Pharm. 2018, 44, 1975–1989. DOI: 10.1080/03639045.2018.1506472.
  • Chokshi, N. V.; Rawal, S.; Solanki, D.; Gajjar, S.; Bora, V.; Patel, B. M.; Patel, M. M. Fabrication and Characterization of Surface Engineered Rifampicin Loaded Lipid Nanoparticulate Systems for the Potential Treatment of Tuberculosis: An in Vitro and in Vivo Evaluation. J. Pharm. Sci. 2021, 110, 2221–2232. DOI: 10.1016/j.xphs.2021.02.018.
  • Vinchhi, P.; Patel, M. M. Triumph against Cancer: Invading Colorectal Cancer with Nanotechnology. Expert Opin. Drug Deliv. 2021, 18, 1169–1192. DOI: 10.1080/17425247.2021.1889512.
  • Rawal, S. U.; Patel, M. M. Lipid Nanoparticulate Systems. In Lipid Nanocarriers for Drug Targeting; Elsevier: Oxford, United Kingdom, 2018; pp 49–138 DOI: 10.1016/B978-0-12-813687-4.00002-5.
  • Shete, H.; Chatterjee, S.; De, A.; Patravale, V. Long Chain Lipid Based Tamoxifen NLC. Part II: Pharmacokinetic, Biodistribution and in Vitro Anticancer Efficacy Studies. Int. J. Pharm. 2013, 454, 584–592. DOI: 10.1016/j.ijpharm.2013.03.036.
  • Rawal, S. U.; Patel, B. M.; Patel, M. M. New Drug Delivery Systems Developed for Brain Targeting. Drugs. 2022, 82, 749–792. DOI: 10.1007/s40265-022-01717-z.
  • Rawal, S.; Patel, M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-Micro Lett. 2021, 13, 142. DOI: 10.1007/s40820-021-00630-6.
  • Rostami, E.; Kashanian, S.; Azandaryani, A. H.; Faramarzi, H.; Dolatabadi, J. E. N.; Omidfar, K. Drug Targeting Using Solid Lipid Nanoparticles. Chem. Phys. Lipids. 2014, 181, 56–61. DOI: 10.1016/j.chemphyslip.2014.03.006.
  • Jain, N. K.; Mishra, V.; Mehra, N. K. Targeted Drug Delivery to Macrophages. Expert Opin. Drug Deliv. 2013, 10, 353–367. DOI: 10.1517/17425247.2013.751370.
  • Nimje, N.; Agarwal, A.; Saraogi, G. K.; Lariya, N.; Rai, G.; Agrawal, H.; Agrawal, G. P. Mannosylated Nanoparticulate Carriers of Rifabutin for Alveolar Targeting. J. Drug Target. 2009, 17, 777–787. DOI: 10.3109/10611860903115308.
  • Azarmi, S.; Roa, W. H.; Löbenberg, R. Targeted Delivery of Nanoparticles for the Treatment of Lung Diseases. Adv. Drug Deliv. Rev. 2008, 60, 863–875. DOI: 10.1016/j.addr.2007.11.006.
  • Saraogi, G. K.; Sharma, B.; Joshi, B.; Gupta, P.; Gupta, U. D.; Jain, N. K.; Agrawal, G. P. Mannosylated Gelatin Nanoparticles Bearing Isoniazid for Effective Management of Tuberculosis. J. Drug Target. 2011, 19, 219–227. DOI: 10.3109/1061186X.2010.492522.
  • Kaur, I. P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of Solid Lipid Nanoparticles in Brain Targeting. J. Control. Release. 2008, 127, 97–109. DOI: 10.1016/j.jconrel.2007.12.018.
  • Azad, A. K.; Rajaram, M. V. S.; Schlesinger, L. S. Exploitation of the Macrophage Mannose Receptor (CD206) in Infectious Disease Diagnostics and Therapeutics. J. Cytol. Mol. Biol. 2014, 1, 2696–2700. DOI: 10.13188/2325-4653.1000003.
  • Chokshi, N. V.; Khatri, H. N.; Patel, M. M. Fabrication and Optimization of Isoniazid Loaded Lipid Nanoparticulate Systems for the Treatment of Tuberculosis. Adv. Sci. Eng. Med. 2019, 11, 741–757. DOI: 10.1166/asem.2019.2418.
  • Darwis, Y.; Ali Khan, A.; Mudassir, J.; Mohtar, N. Advanced Drug Delivery to the Lymphatic System: Lipid-Based Nanoformulations. Int. J. Nanomed. 2013, 8, 2733–2744. DOI: 10.2147/IJN.S41521.
  • Singh, I.; Swami, R.; Khan, W.; Sistla, R. Lymphatic System: A Prospective Area for Advanced Targeting of Particulate Drug Carriers. Expert Opin. Drug Deliv. 2014, 11, 211–229. DOI: 10.1517/17425247.2014.866088.
  • Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body Distribution of Camptothecin Solid Lipid Nanoparticles after Oral Administration. Pharm. Res. 1999, 16, 751–757. DOI: 10.1023/a:1018888927852.
  • Tiwari, R.; Pathak, K. Nanostructured Lipid Carrier versus Solid Lipid Nanoparticles of Simvastatin: Comparative Analysis of Characteristics, Pharmacokinetics and Tissue Uptake. Int. J. Pharm. 2011, 415, 232–243. DOI: 10.1016/j.ijpharm.2011.05.044.
  • Singh, H.; Bhandari, R.; Kaur, I. P. Encapsulation of Rifampicin in a Solid Lipid Nanoparticulate System to Limit Its Degradation and Interaction with Isoniazid at Acidic PH. Int. J. Pharm. 2013, 446, 106–111. DOI: 10.1016/j.ijpharm.2013.02.012.
  • Dwivedi, P.; Khatik, R.; Khandelwal, K.; Taneja, I.; Raju, K. S. R.; Paliwal, S. K.; Dwivedi, A. K.; Mishra, P. R.; Wahajuddin. Pharmacokinetics Study of Arteether Loaded Solid Lipid Nanoparticles: An Improved Oral Bioavailability in Rats. Int. J. Pharm. 2014, 466 (1–2), 321–327. DOI: 10.1016/j.ijpharm.2014.03.036.
  • Varshosaz, J.; Eskandari, S.; Tabbakhian, M. Freeze-Drying of Nanostructure Lipid Carriers by Different Carbohydrate Polymers Used as Cryoprotectants. Carbohydr. Polym. 2012, 88, 1157–1163. DOI: 10.1016/j.carbpol.2012.01.051.
  • Vinchhi, P.; Patel, J. K.; Patel, M. M. High-Pressure Homogenization Techniques for Nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing; Springer International Publishing: Cham, 2021; pp 263–285 DOI: 10.1007/978-3-030-50703-9_11.
  • Jain, A.; Agarwal, A.; Majumder, S.; Lariya, N.; Khaya, A.; Agrawal, H.; Majumdar, S.; Agrawal, G. P. Mannosylated Solid Lipid Nanoparticles as Vectors for Site-Specific Delivery of an anti-Cancer Drug. J. Control. Release. 2010, 148, 359–367. DOI: 10.1016/j.jconrel.2010.09.003.
  • Kumar, P. V.; Asthana, A.; Dutta, T.; Jain, N. K. Intracellular Macrophage Uptake of Rifampicin Loaded Mannosylated Dendrimers. J. Drug Target. 2006, 14, 546–556. DOI: 10.1080/10611860600825159.
  • Pinheiro, M.; Ribeiro, R.; Vieira, A.; Andrade, F.; Reis, S. Design of a Nanostructured Lipid Carrier Intended to Improve the Treatment of Tuberculosis. Drug Des. Devel. Ther. 2016, 10, 2467–2475. DOI: 10.2147/DDDT.S104395.
  • Gaspar, D. P.; Faria, V.; Gonçalves, L. M. D.; Taboada, P.; Remuñán-López, C.; Almeida, A. J. Rifabutin-Loaded Solid Lipid Nanoparticles for Inhaled Antitubercular Therapy: Physicochemical and in Vitro Studies. Int. J. Pharm. 2016, 497, 199–209. DOI: 10.1016/j.ijpharm.2015.11.050.
  • Sharma, G.; Chopra, K.; Puri, S.; Bishnoi, M.; Rishi, P.; Kaur, I. P. Topical Delivery of TRPsiRNA-Loaded Solid Lipid Nanoparticles Confer Reduced Pain Sensation via TRPV1 Silencing, in Rats. J. Drug Target. 2018, 26, 135–149. DOI: 10.1080/1061186X.2017.1350857.
  • Mathur, P.; Sharma, S.; Rawal, S.; Patel, B.; Patel, M. M. Fabrication, Optimization, and in Vitro Evaluation of Docetaxel-Loaded Nanostructured Lipid Carriers for Improved Anticancer Activity. J. Liposome Res. 2020, 30, 182–196. DOI: 10.1080/08982104.2019.1614055.
  • Rawal, S.; Bora, V.; Patel, B.; Patel, M. Surface-Engineered Nanostructured Lipid Carrier Systems for Synergistic Combination Oncotherapy of Non-Small Cell Lung Cancer. Drug Deliv. Transl. Res. 2021, 11, 2030–2051. DOI: 10.1007/s13346-020-00866-6.
  • Khatri, H.; Chokshi, N.; Rawal, S.; Patel, B. M.; Badanthadka, M.; Patel, M. M. Fabrication and in Vivo Evaluation of Ligand Appended Paclitaxel and Artemether Loaded Lipid Nanoparticulate Systems for the Treatment of NSCLC: A Nanoparticle Assisted Combination Oncotherapy. Int. J. Pharm. 2020, 583, 119386. DOI: 10.1016/j.ijpharm.2020.119386.
  • Sinhmar, G. K.; Shah, N. N.; Rawal, S. U.; Chokshi, N. V.; Khatri, H. N.; Patel, B. M.; Patel, M. M. Surface Engineered Lipid Nanoparticle-Mediated Site-Specific Drug Delivery System for the Treatment of Inflammatory Bowel Disease. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 565–578. DOI: 10.1080/21691401.2018.1463232.
  • Prabhakar, K.; Afzal, S. M.; Kumar, P. U.; Rajanna, A.; Kishan, V. Brain Delivery of Transferrin Coupled Indinavir Submicron Lipid Emulsions—Pharmacokinetics and Tissue Distribution. Colloids Surf. B Biointerf. 2011, 86, 305–313. DOI: 10.1016/j.colsurfb.2011.04.013.
  • Yang, L.; Geng, Y.; Li, H.; Zhang, Y.; You, J.; Chang, Y. Enhancement the Oral Bioavailability of Praziquantel by Incorporation into Solid Lipid Nanoparticles. Pharmazie. 2009, 64, 86–89. DOI: 10.1691/ph.2009.8140.
  • Li, S.; Ji, Z.; Zou, M.; Nie, X.; Shi, Y.; Cheng, G. Preparation, Characterization, Pharmacokinetics and Tissue Distribution of Solid Lipid Nanoparticles Loaded with Tetrandrine. AAPS Pharm. Sci. Tech. 2011, 12, 1011. DOI: 10.1208/s12249-011-9665-3.
  • Subedi, R. K.; Kang, K. W.; Choi, H.-K. Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Doxorubicin. Eur. J. Pharm. Sci. 2009, 37, 508–513. DOI: 10.1016/j.ejps.2009.04.008.
  • Mathur, P.; Rawal, S.; Patel, B.; Patel, M. M. Oral Delivery of Anticancer Agents Using Nanoparticulate Drug Delivery System. Curr. Drug Metab. 2019, 20, 1132–1140. DOI: 10.2174/1389200220666191007154017.
  • Khatri, H.; Chokshi, N.; Rawal, S.; Patel, M. M. Fabrication, Characterization and Optimization of Artemether Loaded PEGylated Solid Lipid Nanoparticles for the Treatment of Lung Cancer. Mater. Res. Express. 2019, 6, 045014. DOI: 10.1088/2053-1591/aaf8a3.
  • Rawal, S.; Patel, B.; Patel, M. M. Fabrication, Optimisation and in Vitro Evaluation of Docetaxel and Curcumin Co-Loaded Nanostructured Lipid Carriers for Improved Antitumor Activity against Non-Small Cell Lung Carcinoma. J. Microencapsul. 2020, 37, 543–556. DOI: 10.1080/02652048.2020.1823498.
  • Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid Lipid Nanoparticles for Enhancing Vinpocetine’s Oral Bioavailability. J. Control. Release. 2006, 114, 53–59. DOI: 10.1016/j.jconrel.2006.05.010.
  • Sato, M. R.; Oshiro Junior, J. A.; Machado, R. T. A.; de Souza, P. C.; Campos, D. L.; Pavan, F.; da Silva, P. B.; Chorilli, M. Nanostructured Lipid Carriers for Incorporation of Copper(II) Complexes to be Used against Mycobacterium Tuberculosis. Drug Des. Devel. Ther. 2017, 11, 909–921. DOI: 10.2147/DDDT.S127048.
  • Vandal, O. H.; Nathan, C. F.; Ehrt, S. Acid Resistance in Mycobacterium Tuberculosis. J. Bacteriol. 2009, 191, 4714–4721. DOI: 10.1128/JB.00305-09.
  • Gao, Y.; Sarfraz, M. K.; Clas, S.-D.; Roa, W.; Löbenberg, R. Hyaluronic Acid-Tocopherol Succinate-Based Self-Assembling Micelles for Targeted Delivery of Rifampicin to Alveolar Macrophages. J. Biomed. Nanotechnol. 2015, 11, 1312–1329. DOI: 10.1166/jbn.2015.2091.
  • Benito-Gallo, P.; Franceschetto, A.; Wong, J. C. M.; Marlow, M.; Zann, V.; Scholes, P.; Gershkovich, P. Chain Length Affects Pancreatic Lipase Activity and the Extent and PH–Time Profile of Triglyceride Lipolysis. Eur. J. Pharm. Biopharm. 2015, 93, 353–362. DOI: 10.1016/j.ejpb.2015.04.027.
  • Kalaria, D. R.; Sharma, G.; Beniwal, V.; Ravi Kumar, M. N. V. Design of Biodegradable Nanoparticles for Oral Delivery of Doxorubicin: In Vivo Pharmacokinetics and Toxicity Studies in Rats. Pharm. Res. 2009, 26, 492–501. DOI: 10.1007/s11095-008-9763-4.
  • Abdelwahed, W.; Degobert, G.; Fessi, H. Investigation of Nanocapsules Stabilization by Amorphous Excipients during Freeze-Drying and Storage. Eur. J. Pharm. Biopharm. 2006, 63, 87–94. DOI: 10.1016/j.ejpb.2006.01.015.
  • ICH. International Conference on Harmonization (ICH). Guidance for Industry: Q1A(R2) Stability Testing of New Drug Substances and Products. ICH Harmon. Tripart. Guidel., 2003, 4, 24.
  • Chai, G.-H.; Xu, Y.; Chen, S.-Q.; Cheng, B.; Hu, F.-Q.; You, J.; Du, Y.-Z.; Yuan, H. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and Their Related Cytotoxicology. ACS Appl. Mater. Interf. 2016, 8, 5929–5940. DOI: 10.1021/acsami.6b00821.
  • Saraogi, G. K.; Gupta, P.; Gupta, U. D.; Jain, N. K.; Agrawal, G. P. Gelatin Nanocarriers as Potential Vectors for Effective Management of Tuberculosis. Int. J. Pharm. 2010, 385, 143–149. DOI: 10.1016/j.ijpharm.2009.10.004.
  • Beloqui, A.; Coco, R.; Alhouayek, M.; Solinís, M. Á.; Rodríguez-Gascón, A.; Muccioli, G. G.; Préat, V. Budesonide-Loaded Nanostructured Lipid Carriers Reduce Inflammation in Murine DSS-Induced Colitis. Int. J. Pharm. 2013, 454, 775–783. DOI: 10.1016/j.ijpharm.2013.05.017.
  • Erokhina, M.; Rybalkina, E.; Barsegyan, G.; Onishchenko, G.; Lepekha, L. The Toxicity of Rifampicin Polylactic Acid Nanoparticles against Mycobacterium Bovis BCG and Human Macrophage THP-1 Cell Line. IOP Conf. Ser: Mater. Sci. Eng. 2015, 98, 012017. DOI: 10.1088/1757-899X/98/1/012017.
  • Severino, P.; Andreani, T.; Jäger, A.; Chaud, M. V.; Santana, M. H. A.; Silva, A. M.; Souto, E. B. Solid Lipid Nanoparticles for Hydrophilic Biotech Drugs: Optimization and Cell Viability Studies (Caco-2 & HEPG-2 Cell Lines). Eur. J. Med. Chem. 2014, 81, 28–34. DOI: 10.1016/j.ejmech.2014.04.084.
  • Pizzol, C.; Filippin-Monteiro, F.; Restrepo, J.; Pittella, F.; Silva, A.; Alves de Souza, P.; Machado de Campos, A.; Creczynski-Pasa, T. Influence of Surfactant and Lipid Type on the Physicochemical Properties and Biocompatibility of Solid Lipid Nanoparticles. Int. J. Environ. Res. Public Health. 2014, 11, 8581–8596. DOI: 10.3390/ijerph110808581.
  • Song, X.; Lin, Q.; Guo, L.; Fu, Y.; Han, J.; Ke, H.; Sun, X.; Gong, T.; Zhang, Z. Rifampicin Loaded Mannosylated Cationic Nanostructured Lipid Carriers for Alveolar Macrophage-Specific Delivery. Pharm. Res. 2015, 32, 1741–1751. DOI: 10.1007/s11095-014-1572-3.
  • Chuan, J.; Li, Y.; Yang, L.; Sun, X.; Zhang, Q.; Gong, T.; Zhang, Z. Enhanced Rifampicin Delivery to Alveolar Macrophages by Solid Lipid Nanoparticles. J. Nanopart. Res. 2013, 15, 1634. DOI: 10.1007/s11051-013-1634-1.
  • Rivolta, I.; Panariti, A.; Lettiero, B.; Sesana, S.; Gasco, P.; Gasco, M. R.; Masserini, M.; Miserocchi, G. Cellular Uptake of Coumarin-6 as a Model Drug Loaded in Solid Lipid Nanoparticles. J. Physiol. Pharmacol. 2011, 62, 45–53.
  • Bhandari, R. A Sensitive HPLC Method for Determination of Isoniazid in Rat Plasma, Brain, Liver and Kidney. J. Chromatogr. Sep. Tech. 2012, 03, 1000128. DOI: 10.4172/2157-7064.1000128.
  • European Medicines Agency ICH. Q2 (R1): Validation of Analytical Procedures: Text and Methodology. Int. Conf. Harmon. 2005, 2, 1–15.
  • Pouplin, T.; Phuong, P. N.; Toi, P. V.; Nguyen Pouplin, J.; Farrar, J. Isoniazid, Pyrazinamide and Rifampicin Content Variation in Split Fixed-Dose Combination Tablets. PLoS One. 2014, 9, e102047. DOI: 10.1371/journal.pone.0102047.
  • Calleja, I.; Blanco-Príeto, M. J.; Ruz, N.; Renedo, M. J.; Dios-Viéitez, M. C. High-Performance Liquid–Chromatographic Determination of Rifampicin in Plasma and Tissues. J. Chromatogr. A 2004, 1031, 289–294. DOI: 10.1016/j.chroma.2003.12.041.
  • Patel, M. M.; Amin, A. F. Design and Optimization of Colon-Targeted System of Theophylline for Chronotherapy of Nocturnal Asthma. J. Pharm. Sci. 2011, 100, 1760–1772. DOI: 10.1002/jps.22406.
  • Patel, M. M.; Amin, A. F. Formulation and Development of Release Modulated Colon Targeted System of Meloxicam for Potential Application in the Prophylaxis of Colorectal Cancer. Drug Deliv. 2011, 18, 281–293. DOI: 10.3109/10717544.2010.538447.
  • Patel, M. M. Formulation and Development of Di-Dependent Microparticulate System for Colon-Specific Drug Delivery. Drug Deliv. Transl. Res. 2017, 7, 312–324. DOI: 10.1007/s13346-017-0358-7.
  • Patel, M. D.; Date, P. V.; Gaikwad, R. V.; Samad, A.; Malshe, V. C.; Devarajan, P. V. Comparative Evaluation of Polymeric Nanoparticles of Rifampicin Comprising Gantrez and Poly(Ethylene Sebacate) on Pharmacokinetics, Biodistribution and Lung Uptake following Oral Administration. J. Biomed. Nanotechnol. 2014, 10, 687–694. DOI: 10.1166/jbn.2014.1739.
  • Caliph, S. M.; Charman, W. N.; Porter, C. J. H. Effect of Short‐, Medium‐, and Long‐Chain Fatty Acid‐Based Vehicles on the Absolute Oral Bioavailability and Intestinal Lymphatic Transport of Halofantrine and Assessment of Mass Balance in Lymph‐Cannulated and Non‐Cannulated Rats. J. Pharm. Sci. 2000, 89, 1073–1084. DOI: 10.1002/1520-6017(200008)89:8<1073::AID-JPS12>3.0.CO;2-V.
  • Sinhmar, G. K.; Shah, N. N.; Chokshi, N. V.; Khatri, H. N.; Patel, M. M. Process, Optimization, and Characterization of Budesonide-Loaded Nanostructured Lipid Carriers for the Treatment of Inflammatory Bowel Disease. Drug Dev. Ind. Pharm. 2018, 44, 1078–1089. DOI: 10.1080/03639045.2018.1434194.
  • Aburahma, M. H.; Badr-Eldin, S. M. Compritol 888 ATO: A Multifunctional Lipid Excipient in Drug Delivery Systems and Nanopharmaceuticals. Expert Opin. Drug Deliv. 2014, 11, 1865–1883. DOI: 10.1517/17425247.2014.935335.
  • Shojai, F.; Pettersson, A. B.; Mäntylä, T.; Rosenholm, J. Electrostatic and Electrosteric Stabilization of Aqueous Slips of 3Y–ZrO2 Powder. J. Eur. Ceram. Soc. 2000, 20, 277–283. DOI: 10.1016/S0955-2219(99)00173-9.
  • Paliwal, R.; Rai, S.; Vaidya, B.; Khatri, K.; Goyal, A. K.; Mishra, N.; Mehta, A.; Vyas, S. P. Effect of Lipid Core Material on Characteristics of Solid Lipid Nanoparticles Designed for Oral Lymphatic Delivery. Nanomedicine. 2009, 5, 184–191. DOI: 10.1016/j.nano.2008.08.003.
  • Barzegar-Jalali, M.; Adibkia, K.; Valizadeh, H.; Shadbad, M. R. S.; Nokhodchi, A.; Omidi, Y.; Mohammadi, G.; Nezhadi, S. H.; Hasan, M. Kinetic Analysis of Drug Release from Nanoparticles. J. Pharm. Pharm. Sci. 2008, 11, 167–177. DOI: 10.18433/J3D59T.
  • Abd El-Tawab, A.; El-Hofy, F.; Nasr, E.; Sriranganathan, N.; Soliman, E. Screening the Activity of anti-Tuberculosis Drugs against M. Bovis BCG Connaught and M. Bovis BCG Pasteur Growing in J774A.1 Cell Line Macrophages. Benha Vet. Med. J. 2016, 31, 124–131. DOI: 10.21608/bvmj.2016.31237.
  • Rojanarat, W.; Changsan, N.; Tawithong, E.; Pinsuwan, S.; Chan, H.-K.; Srichana, T. Isoniazid Proliposome Powders for Inhalation—Preparation, Characterization and Cell Culture Studies. Int. J. Mol. Sci. 2011, 12, 4414–4434. DOI: 10.3390/ijms12074414.
  • Garcia-Aguilar, T.; Espinosa-Cueto, P.; Magallanes-Puebla, A.; Mancilla, R. The Mannose Receptor is Involved in the Phagocytosis of Mycobacteria-Induced Apoptotic Cells. J. Immunol. Res. 2016, 2016, 3845247–3845214. DOI: 10.1155/2016/3845247.
  • D'Addio, S. M.; Baldassano, S.; Shi, L.; Cheung, L.; Adamson, D. H.; Bruzek, M.; Anthony, J. E.; Laskin, D. L.; Sinko, P. J.; Prud’homme, R. K. Optimization of Cell Receptor-Specific Targeting through Multivalent Surface Decoration of Polymeric Nanocarriers. J. Control. Release. 2013, 168, 41–49. DOI: 10.1016/j.jconrel.2013.02.004.
  • Jain, S. K.; Gupta, Y.; Jain, A.; Saxena, A. R.; Khare, P.; Jain, A. Mannosylated Gelatin Nanoparticles Bearing an anti-HIV Drug Didanosine for Site-Specific Delivery. Nanomedicine. 2008, 4, 41–48. DOI: 10.1016/j.nano.2007.11.004.
  • Loos, U.; Musch, E.; Jensen, J. C.; Mikus, G.; Schwabe, H. K.; Eichelbaum, M. Pharmacokinetics of Oral and Intravenous Rifampicin during Chronic Administration. Klin. Wochenschr. 1985, 63, 1205–1211. DOI: 10.1007/BF01733779.
  • Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G.-I.; Makino, K.; Terada, H. Delivery of Rifampicin–PLGA Microspheres into Alveolar Macrophages is Promising for Treatment of Tuberculosis. J. Control. Release. 2010, 142, 339–346. DOI: 10.1016/j.jconrel.2009.11.020.
  • Li, R.; Eun, J. S.; Lee, M.-K. Pharmacokinetics and Biodistribution of Paclitaxel Loaded in Pegylated Solid Lipid Nanoparticles after Intravenous Administration. Arch. Pharm. Res. 2011, 34, 331–337. DOI: 10.1007/s12272-011-0220-2.
  • Dodiya, S. S.; Chavhan, S. S.; Sawant, K. K.; Korde, A. G. Solid Lipid Nanoparticles and Nanosuspension Formulation of Saquinavir: Preparation, Characterization, Pharmacokinetics and Biodistribution Studies. J. Microencapsul. 2011, 28, 515–527. DOI: 10.3109/02652048.2011.590612.
  • Maincent, P.; Thouvenot, P.; Amicabile, C.; Hoffman, M.; Kreuter, J.; Couvreur, P.; Devissaguet, J. P. Lymphatic Targeting of Polymeric Nanoparticles after Intraperitoneal Administration in Rats. Pharm. Res. 1992, 9, 1534–1539. DOI: 10.1023/a:1015895804597.
  • Jani, P.; Halbert, G. W.; Langridge, J.; Florence, A. T. The Uptake and Translocation of Latex Nanospheres and Microspheres after Oral Administration to Rats. J. Pharm. Pharmacol. 2011, 41, 809–812. DOI: 10.1111/j.2042-7158.1989.tb06377.x.
  • Hussell, T.; Bell, T. J. Alveolar Macrophages: Plasticity in a Tissue-Specific Context. Nat. Rev. Immunol. 2014, 14, 81–93. DOI: 10.1038/nri3600.
  • Largent, B. L.; Walton, K. M.; Hoppe, C. A.; Lee, Y. C.; Schnaar, R. L. Carbohydrate-Specific Adhesion of Alveolar Macrophages to Mannose-Derivatized Surfaces. J. Biol. Chem. 1984, 259, 1764–1769. DOI: 10.1016/S0021-9258(17)43473-9.
  • De Almeida, M. S.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding Nanoparticle Endocytosis to Improve Targeting Strategies in Nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434. DOI: 10.1039/d0cs01127d.
  • McCright, J.; Naiknavare, R.; Yarmovsky, J.; Maisel, K. Targeting Lymphatics for Nanoparticle Drug Delivery. Front. Pharmacol. 2022, 13, 887402. DOI: 10.3389/fphar.2022.887402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.