51
Views
0
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Univariate and multivariate kinetic and structural analysis of photoinduced tetracycline degradation

, , , &
Pages 221-237 | Received 28 Mar 2023, Accepted 15 Oct 2023, Published online: 08 Nov 2023

References

  • Ben, W., B. Zhu, X. Yuan, Y. Zhang, M. Yang, and Z. Qiang. 2018. “Occurrence, Removal and Risk of Organic Micropollutants in Wastewater Treatment Plants across China: Comparison of Wastewater Treatment Processes.” Water Research 130: 38–46. https://doi.org/10.1016/j.watres.2017.11.057
  • Cai, A., Deng, J., Xu, M., Zhu, T., Zhou, S., Li, J., Wang, G., Li, X., 2020. “Degradation of tetracycline by UV activated monochloramine process: Kinetics, degradation pathway, DBPs formation and toxicity assessment.” Chem. Eng. J. 395, 125090. https://doi.org/10.1016/j.cej.2020.125090
  • Bolton, J. R., M. I. Stefan, P.-S. Shaw, and K. R. Lykke. 2011. “Determination of the Quantum Yields of the Potassium Ferrioxalate and Potassium Iodide–Iodate Actinometers and a Method for the Calibration of Radiometer Detectors.” Journal of Photochemistry and Photobiology A: Chemistry 222 (1): 166–169. https://doi.org/10.1016/j.jphotochem.2011.05.017
  • Chopra, I., and M. Roberts. 2001. “Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance.” Microbiology and Molecular Biology Reviews 65 (2): 232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001
  • Dalmázio, I., M. O. Almeida, R. Augusti, and T. M. A. Alves. 2007. “Monitoring the Degradation of Tetracycline by Ozone in Aqueous Medium via Atmospheric Pressure Ionization Mass Spectrometry.” Journal of the American Society for Mass Spectrometry 18 (4): 679–687. https://doi.org/10.1016/j.jasms.2006.12.001
  • De Juan, A., J. Jaumot, and R. Tauler. 2014. “Multivariate Curve Resolution (MCR). Solving the Mixture Analysis Problem.” Analytical Methods 6 (14): 4964–4976. https://doi.org/10.1039/C4AY00571F
  • De Luca, M., R. Tauler, G. Ioele, and G. Ragno. 2013. “Study of Photodegradation Kinetics of Melatonin by Multivariate Curve Resolution (MCR) with Estimation of Feasible Band Boundaries.” Drug Testing and Analysis 5 (2): 96–102. https://doi.org/10.1002/dta.276
  • Ding, H., Y. Wu, W. Zhang, J. Zhong, Q. Lou, P. Yang, and Y. Fang. 2017. “Occurrence, Distribution, and Risk Assessment of Antibiotics in the Surface Water of Poyang Lake, the Largest Freshwater Lake in China.” Chemosphere 184: 137–147. https://doi.org/10.1016/j.chemosphere.2017.05.148
  • Dusi, E., M. Rybicki, and D. Jungmann. 2019. "The Database “Pharmaceuticals in the Environment” – Update and New Analysis." Umweltbundesamt Texte 67/2019. Accessed November 3, 2023. https://www.umweltbundesamt.de/publikationen/the-database-pharmaceuticals-in-the-environment
  • European Commission. 2021. "Information Platform for Chemical Monitoring." Accessed February 10, 2023. https://ipchem.jrc.ec.europa.eu/#databaseConsole/PHARMSUBA.
  • Fatta-Kassinos, D., M. I. Vasquez, and K. Kümmerer. 2011. “Transformation Products of Pharmaceuticals in Surface Waters and Wastewater Formed during Photolysis and Advanced Oxidation Processes - Degradation, Elucidation of Byproducts and Assessment of Their Biological Potency.” Chemosphere 85 (5): 693–709. https://doi.org/10.1016/j.chemosphere.2011.06.082
  • Fekadu, S., E. Alemayehu, R. Dewil, and B. Van der Bruggen. 2019. “Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge.” The Science of the Total Environment 654: 324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072
  • Gaballah, M. S., J. Guo, A. Hassanein, M. Sobhi, Y. Zheng, M. Philbert, B. Li, H. Sun, and R. Dong. 2023. “Removal Performance and Inhibitory Effects of Combined Tetracycline, Oxytetracycline, Sulfadiazine, and Norfloxacin on Anaerobic Digestion Process Treating Swine Manure.” The Science of the Total Environment 857 (Pt 3): 159536. https://doi.org/10.1016/j.scitotenv.2022.159536
  • Hatchard, C. G., and C. Parker. 1956. “A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 235, 1203: 518–536. https://doi.org/10.1098/rspa.1956.0102
  • Jaumot, J., R. Gargallo, A. De Juan, and R. Tauler. 2005. “A Graphical User-Friendly Interface for MCR-ALS: A New Tool for Multivariate Curve Resolution in MATLAB.” Chemometrics and Intelligent Laboratory Systems 76 (1): 101–110. https://doi.org/10.1016/j.chemolab.2004.12.007
  • Jaumot, J., A. De Juan, and R. Tauler. 2015. “MCR-ALS GUI 2.0: New Features and Applications.” Chemometrics and Intelligent Laboratory Systems 140: 1–12. https://doi.org/10.1016/j.chemolab.2014.10.003
  • Jurado, A., M. Walther, and M. S. Díaz-Cruz. 2019. “Occurrence, Fate and Environmental Risk Assessment of the Organic Microcontaminants Included in the Watch Lists Set by EU Decisions 2015/495 and 2018/840 in the Groundwater of Spain.” The Science of the Total Environment 663: 285–296. https://doi.org/10.1016/j.scitotenv.2019.01.270
  • Khalilian, H., A. Semnani, A. Rinnan, and H. Haddadi. 2016. “Optimization and Kinetic Studies of Photodegradation of Rhodamine B with Immobilized Ag-, S-, and N-Doped TiO2 under Visible Irradiation: Using Box-Behnken Designs (BBDs), Multivariate Curve Resolution (MCR-ALS) and Parallel Factor (PARAFAC) Analysis.” Analytical Methods 8 (21): 4293–4299. https://doi.org/10.1039/C6AY00649C
  • Kochany, J., and J. Bolton. 1991. “Of Aqueous Organic Pollutants. 1. EPR Spin-Trapping Technique for the Determination of Hydroxyl Radical Rate Constants in the Photooxidation of Chlorophenols Following.” The Journal of Physical Chemistry 95 (13): 5116–5120. https://doi.org/10.1021/j100166a039
  • Kochany, J., and J. R. Bolton. 1992. “Mechanism of Photodegradation of Aqueous Organic Pollutants. 2. Measurement of the Primary Rate Constants for Reaction of Hydroxyl Radicals with Benzene and Some Halobenzenes Using an EPR Spin-Trapping Method following the Photolysis of Hydrogen Peroxide.” Environmental Science & Technology 26 (2): 262–265. https://doi.org/10.1021/es00026a004
  • Kuhn, H., S. E. Braslavsky, and R. Schmidt. 2004. “Chemical Actinometry. (IUPAC Technical Report).” Pure and Applied Chemistry 76 (12): 2105–2146. https://doi.org/10.1351/pac200476122105
  • Li, S., and J. Hu. 2016. “Photolytic and Photocatalytic Degradation of Tetracycline: Effect of Humic Acid on Degradation Kinetics and Mechanisms.” Journal of Hazardous Materials 318: 134–144. https://doi.org/10.1016/j.jhazmat.2016.05.100
  • Liu, F., X. Liu, S. Zhao, J. Wang, X. Qian, B. Cui, and J. Bai. 2019. “Photochemical Transformations of Tetracycline Antibiotics Influenced by Natural Colloidal Particles: Kinetics, Factor Effects and Mechanisms.” Chemosphere 235: 867–875. https://doi.org/10.1016/j.chemosphere.2019.06.201
  • Liu, Y., X. He, Y. Fu, and D. D. Dionysiou. 2016. “Kinetics and Mechanism Investigation on the Destruction of Oxytetracycline by UV-254 nm Activation of Persulfate.” Journal of Hazardous Materials 305: 229–239. https://doi.org/10.1016/j.jhazmat.2015.11.043
  • Maggio, R. M., N. L. Calvo, S. E. Vignaduzzo, and T. S. Kaufman. 2014. “Pharmaceutical Impurities and Degradation Products: Uses and Applications of NMR Techniques.” Journal of Pharmaceutical and Biomedical Analysis 101: 102–122. https://doi.org/10.1016/j.jpba.2014.04.016
  • Marín-García, M., M. De Luca, G. Ragno, and R. Tauler. 2022. “Coupling of Spectrometric, Chromatographic, and Chemometric Analysis in the Investigation of the Photodegradation of Sulfamethoxazole.” Talanta 239: 122953. https://doi.org/10.1016/j.talanta.2021.122953
  • Mas, S., R. Tauler, and A. De Juan. 2011. “Chromatographic and Spectroscopic Data Fusion Analysis for Interpretation of Photodegradation Processes.” Journal of Chromatography. A 1218 (51): 9260–9268. https://doi.org/10.1016/j.chroma.2011.10.035
  • Niessen, W. M. A. 2011. “Fragmentation of Toxicologically Relevant Drugs in Positive-Ion Liquid Chromatography-Tandem Mass Spectrometry.” Mass Spectrometry Reviews 30 (4): 626–663. https://doi.org/10.1002/mas.20332
  • Niessen, W. M. A., and M. Honing. 2015. “Mass Spectrometry Strategies in the Assignment of Molecular Structure: Breaking Chemical Bonds before Bringing the Pieces of the Puzzle Together." Chap. 4.” In Structure Elucidation in Organic Chemistry: The Search for the Right Tools edited by M.-M. Cid and J. Bravo, 105–144. Weinheim: Wiley-VCH.
  • Niu, J., Y. Li, and W. Wang. 2013. “Light-Source-Dependent Role of Nitrate and Humic Acid in Tetracycline Photolysis: Kinetics and Mechanism.” Chemosphere 92 (11): 1423–1429. https://doi.org/10.1016/j.chemosphere.2013.03.049
  • Pagar, R. R., S. R. Musale, G. Pawar, D. Kulkarni, and P. S. Giram. 2022. “Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials.” ACS Biomaterials Science & Engineering 8 (6): 2161–2195. https://doi.org/10.1021/acsbiomaterials.1c01304
  • Saravanan, A., V. C. Deivayanai, P. S. Kumar, G. Rangasamy, R. V. Hemavathy, T. Harshana, N. Gayathri, and K. Alagumalai. 2022. “A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook.” Chemosphere 308 (Pt 3): 136524. https://doi.org/10.1016/j.chemosphere.2022.136524
  • Schymanski, E. L., H. P. Singer, J. Slobodnik, I. M. Ipolyi, P. Oswald, M. Krauss, T. Schulze, et al. 2015. “Non-Target Screening with High-Resolution Mass Spectrometry: Critical Review Using a Collaborative Trial on Water Analysis.” Analytical and Bioanalytical Chemistry 407 (21): 6237–6255. https://doi.org/10.1007/s00216-015-8681-7
  • Śliwka-Kaszyńska, M., Jakimska-Nagórska, A., Wasik, A., Kot-Wasik, A., 2019. “Phototransformation of three selected pharmaceuticals, naproxen, 17α-Ethinylestradiol and tetracycline in water: Identification of photoproducts and transformation pathways.” Microchem. J. 148, 673–683. https://doi.org/10.1016/j.microc.2019.05.036
  • Stankov, V., M. N. Stankov, M. Cvetnić, M. Sigurnjak Bureš, Š. Ukić, D. Kučić Grgić, A. Lončarić Božić, H. Kušić, and T. Bolanča. 2021. “Environmental Aspects of UV-C-Based Processes for the Treatment of Oxytetracycline in Water.” Environmental Pollution 277: 116797. https://doi.org/10.1016/j.envpol.2021.116797
  • Sun, L., and J. R. Bolton. 1996. “Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO 2 Suspensions.” The Journal of Physical Chemistry 100 (10): 4127–4134. https://doi.org/10.1021/jp9505800
  • Tauler, R., and A. De Juan. 2015. “Multivariate Curve Resolution for Quantitative Analysis.” Data Handling in Science and Technology 29:247–292. https://doi.org/10.1016/B978-0-444-63527-3.00005-9
  • Vasconcelos, T. G., D. M. Henriques, A. König, A. F. Martins, and K. Kümmerer. 2009. “Photo-Degradation of the Antimicrobial Ciprofloxacin at High PH: Identification and Biodegradability Assessment of the Primary by-Products.” Chemosphere 76 (4): 487–493. https://doi.org/10.1016/j.chemosphere.2009.03.022
  • Vieira, W. T., M. B. de Farias, M. P. Spaolonzi, M. G. C. da Silva, and M. G. A. Vieira. 2021. “Latest Advanced Oxidative Processes Applied for the Removal of Endocrine Disruptors from Aqueous Media – a Critical Report.” Journal of Environmental Chemical Engineering 9 (4): 105748. https://doi.org/10.1016/j.jece.2021.105748
  • Voigt, M., A. Wirtz, K. Hoffmann-Jacobsen, and M. Jaeger, Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Department of Chemistry, Adlerstr. 32, 47798 Krefeld, Germany. 2020. “Prior Art for the Development of a Fourth Purification Stage in Wastewater Treatment Plant for the Elimination of Anthropogenic Micropollutants-a Short-Review.” AIMS Environmental Science 7 (1): 69–98. https://doi.org/10.1016/j.scitotenv.2017.12.074
  • Yan, H., M. Luo, Q. Chen, T. Jeong, J. Zhang, and L. Wang. 2020. “Efficacy and Mechanism of Chemical-Free VUV/UV Process for Oxytetracycline Degradation: Continuous-Flow Experiment and CFD Modeling.” Chemical Engineering Journal Advances 4: 100059. https://doi.org/10.1016/j.ceja.2020.100059
  • Yan, T., Q. Ping, A. Zhang, L. Wang, Y. Dou, and Y. Li. 2021. “Enhanced Removal of Oxytetracycline by UV-Driven Advanced Oxidation with Peracetic Acid: Insight into the Degradation Intermediates and N-Nitrosodimethylamine Formation Potential.” Chemosphere 274: 129726. https://doi.org/10.1016/j.chemosphere.2021.129726
  • Yuan, F., C. Hu, X. Hu, D. Wei, Y. Chen, and J. Qu. 2011. “Photodegradation and Toxicity Changes of Antibiotics in UV and UV/H(2)O(2) Process.” Journal of Hazardous Materials 185 (2–3): 1256–1263. https://doi.org/10.1016/j.jhazmat.2010.10.040
  • Zhu, X.-D., Y.-J. Wang, R.-J. Sun, and D.-M. Zhou. 2013. “Photocatalytic Degradation of Tetracycline in Aqueous Solution by Nanosized TiO2.” Chemosphere 92 (8): 925–932. https://doi.org/10.1016/j.chemosphere.2013.02.066
  • Zhu, Y., K. Liu, Y. Muhammad, H. Zhang, Z. Tong, B. Yu, and M. Sahibzada. 2020. “Effects of Divalent Copper on Tetracycline Degradation and the Proposed Transformation Pathway.” Environmental Science and Pollution Research International 27 (5): 5155–5167. https://doi.org/10.1007/s11356-019-07062-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.