153
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Insights into low-cost pm sensors using size-resolved scattering intensity of cooking aerosols in a test house

, , &
Pages 739-751 | Received 13 Sep 2023, Accepted 23 Feb 2024, Published online: 30 Apr 2024

References

  • Boedicker, E. K., E. W. Emerson, G. R. McMeeking, S. Patel, M. E. Vance, and D. K. Farmer. 2021. Fates and spatial variations of accumulation mode particles in a multi-zone indoor environment during the HOMEChem campaign. Environ. Sci. Process. Impacts. 23 (7):1029–39. doi: 10.1039/D1EM00087J.
  • Bohren, C. F., and D. R. Huffman. 1983. Absorption and Scattering of Light by Small Particles. New York, NY: John Wiley & Sons, Inc.
  • Bulot, F. M. J., S. J. Johnston, P. J. Basford, N. H. C. Easton, M. Apetroaie-Cristea, G. L. Foster, A. K. R. Morris, S. J. Cox, and M. Loxham. 2019. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 9 (1):7497. 2019 9:1 doi: 10.1038/s41598-019-43716-3.
  • Buonanno, G., F. C. Fuoco, L. Morawska, and L. Stabile. 2013. Airborne particle concentrations at schools measured at different spatial scales. Atmos Environ 67:38–45. doi: 10.1016/j.atmosenv.2012.10.048.
  • Das, D., S. M. Alam El Din, J. Pulczinski, J. N. Mihalic, R. Chen, J. Bressler, A. M. Rule, and G. Ramachandran. 2022. Assessing variability of aerosols generated from e-cigarettes. Inhal. Toxicol. 34 (3–4):90–8. doi: 10.1080/08958378.2022.2044414.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Technol. 38 (12):1185–205. doi: 10.1080/027868290903907.
  • El-Sharkawy, M., and M. Noweir. 2014. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. J. Family Community Med. 21 (1):39–47. doi: 10.4103/2230-8229.128778.
  • Farmer, D. K., M. E. Vance, J. P. D. Abbatt, A. Abeleira, M. R. Alves, C. Arata, E. Boedicker, S. Bourne, F. Cardoso-Saldaña, R. Corsi, et al. 2019. Overview of HOMEChem: house observations of microbial and environmental chemistry. Environ. Sci. Process. Impacts. 21 (8):1280–300. doi: 10.1039/C9EM00228F.
  • Giordano, M. R., C. Malings, S. N. Pandis, A. A. Presto, V. F. McNeill, D. M. Westervelt, M. Beekmann, and R. Subramanian. 2021. From low-cost sensors to high-quality data: a summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J Aerosol Sci 158:105833. doi: 10.1016/j.jaerosci.2021.105833.
  • Hagan, D. H., and J. H. Kroll. 2020. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 13 (11):6343–55. doi: 10.5194/AMT-13-6343-2020.
  • He, M., N. Kuerbanjiang, and S. Dhaniyala. 2019. Performance characteristics of the low-cost Plantower PMS optical sensor. Aerosol Sci. Technol. 54 (2):232–41. (2):232–241. doi: 10.1080/02786826.2019.169601554.
  • Hinds, W. C. 1999. Aerosol technology : properties, behavior, and measurement of airborne particles. Hoboken, NJ: John Wiley & Sons, Inc.
  • Karagulian, F., M. Barbiere, A. Kotsev, L. Spinelle, M. Gerboles, F. Lagler, N. Redon, S. Crunaire, and A. Borowiak. 2019. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 10 (9):506. doi: 10.3390/atmos10090506.
  • Katz, E. F., H. Guo, P. Campuzano-Jost, D. A. Day, W. L. Brown, E. Boedicker, M. Pothier, D. M. Lunderberg, S. Patel, K. Patel, et al. 2021. Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Sci. Technol. 55 (10):1099–114. doi: 10.1080/02786826.2021.1931013/SUPPL_FILE/UAST_A_1931013_SM0233.PDF.
  • Khlystov, A., C. Stanier, and S. N. Pandis. 2004. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci. Technol. 38 (sup1):229–38. doi: 10.1080/02786820390229543.
  • Kim, K. Y., Y. S. Kim, Y. M. Roh, C. M. Lee, and C. N. Kim. 2008. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. Hazard. Mater. 154 (1-3):440–3. doi: 10.1016/J.JHAZMAT.2007.10.042.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001 11:3 11 (3):231–52. doi: 10.1038/sj.jea.7500165.
  • Kuula, J., T. Mäkelä, M. Aurela, K. Teinilä, S. Varjonen, Ó. González, and H. Timonen. 2020. Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 13 (5):2413–23. doi: 10.5194/amt-13-2413-2020.
  • Lai, A. C. K., and Y. W. Ho. 2008. Spatial concentration variation of cooking-emitted particles in a residential kitchen. Build Environ 43 (5):871–6. doi: 10.1016/j.buildenv.2007.01.033.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115 (10):4335–82. doi: 10.1021/CR5006167/ASSET/IMAGES/LARGE/CR-2014-006167_0004.JPEG.
  • Laven, P. 2011. A computer program for scattering of light from a sphere using Mie theory & the Debye series. Accessed December 16, 2023. https://www.philiplaven.com/mieplot.htm.
  • Lee, H., J. Kang, S. Kim, Y. Im, S. Yoo, and D. Lee. 2020. Long-term evaluation and calibration of low-cost particulate matter (PM) sensor. Sensors 20 (13):3617. doi: 10.3390/S20133617.
  • Levy Zamora, M., F. Xiong, D. Gentner, B. Kerkez, J. Kohrman-Glaser, and K. Koehler. 2019. Field and laboratory evaluations of the low-cost plantower particulate matter sensor. Environ. Sci. Technol. 53 (2):838–49. doi: 10.1021/ACS.EST.8B05174/ASSET/IMAGES/LARGE/ES-2018-05174V_0007.JPEG.
  • Li, J., and P. Biswas. 2017. Optical characterization studies of a low-cost particle sensor. Aerosol Air Qual. Res. 17 (7):1691–704. doi: 10.4209/aaqr.2017.02.0085.
  • Li, J., H. Li, Y. Ma, Y. Wang, A. A. Abokifa, C. Lu, and P. Biswas. 2018. Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network. Build Environ 127:138–47. doi: 10.1016/j.buildenv.2017.11.001.
  • Li, J., S. K. Mattewal, S. Patel, and P. Biswas. 2020a. Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual. Res. 20 (2):254–70. doi: 10.4209/aaqr.2018.12.0485.
  • Li, J., S. K. Mattewal, S. Patel, and P. Biswas. 2020b. Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual. Res. 20 (2):254–70. doi: 10.4209/aaqr.2018.12.0485.
  • Liu, D., Q. Zhang, J. Jiang, and D. R. Chen. 2017. Performance calibration of low-cost and portable particular matter (PM) sensors. J Aerosol Sci 112:1–10. doi: 10.1016/j.jaerosci.2017.05.011.
  • Masic, A., D. Bibic, B. Pikula, A. Blazevic, J. Huremovic, and S. Zero. 2020. Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution. Atmos. Meas. Tech. 13 (12):6427–43. doi: 10.5194/amt-13-6427-2020.
  • Mei, H., P. Han, Y. Wang, N. Zeng, D. Liu, Q. Cai, Z. Deng, Y. Wang, Y. Pan, and X. Tang. 2020. Field evaluation of low-cost particulate matter sensors in Beijing. Sensors 20 (16):4381. doi: 10.3390/S20164381.
  • Middleton, W. E. K. 1963. Vision through the Atmosphere, 206. 2nd ed. Toronto: University of Toronto Press.
  • molina Rueda, E., E. Carter, C. L'Orange, C. Quinn, and J. Volckens. 2023. Size-resolved field performance of low-cost sensors for particulate matter air pollution. Environ. Sci. Technol. Lett. 10 (3):247–53. doi: 10.1021/ACS.ESTLETT.3C00030/ASSET/IMAGES/LARGE/EZ3C00030_0002.JPEG.
  • Ouimette, J., W. P. Arnott, P. Laven, R. Whitwell, N. Radhakrishnan, S. Dhaniyala, M. Sandink, J. Tryner, J. Volckens, W. Patrick Arnott, et al. 2023. Fundamentals of low-cost aerosol sensor design and operation. Aerosol Sci. Technol. 58 (1):1–15. doi: 10.1080/02786826.2023.2285935.
  • Ouimette, J. R., W. C. Malm, B. A. Schichtel, P. J. Sheridan, E. Andrews, J. A. Ogren, and W. P. Arnott. 2022. Evaluating the PurpleAir monitor as an aerosol light scattering instrument. Atmos. Meas. Tech. 15 (3):655–76. doi: 10.5194/amt-15-655-2022.
  • Oyola, P., S. Carbone, H. Timonen, M. Torkmahalleh, and J. Lindén. 2022. Editorial: rise of low-cost sensors and citizen science in air quality studies. Front. Environ. Sci. 10:868543. doi: 10.3389/FENVS.2022.868543/BIBTEX.
  • Patel, S., J. Li, A. Pandey, S. Pervez, R. K. Chakrabarty, and P. Biswas. 2017. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels. Environ. Res. 152:59–65. doi: 10.1016/J.ENVRES.2016.10.001.
  • Patel, S., S. Sankhyan, E. K. Boedicker, P. F. Decarlo, D. K. Farmer, A. H. Goldstein, E. F. Katz, W. W. Nazaroff, Y. Tian, J. Vanhanen, et al. 2020. Indoor particulate matter during HOMEChem: concentrations, size distributions, and exposures. Environ. Sci. Technol. 54 (12):7107–16. doi: 10.1021/ACS.EST.0C00740/SUPPL_FILE/ES0C00740_LIVESLIDES.MP4.
  • Pavel, M. R. S., S. U. Zaman, S. Paul, P. Zaman, and A. Salam. 2023. Light absorption properties of black carbon and brown carbon emitted from biomass combustion at the typical rural cooking stoves in Bangladesh. Air Qual. Atmos. Health 16 (4):719–32. 2023 16:4 doi: 10.1007/s11869-023-01302-7.
  • Rada, E. C., J. Saffell, and S. Nehr. 2023. Improving indoor air quality through standardization. Standards 3 (3):240–67. doi: 10.3390/standards3030019.
  • S. Ensor, D., and A. P. Waggoner. 1970. Angular truncation error in the integrating nephelometer. Atmospheric Environment (1967) 4 (5):481–7. doi: 10.1016/0004-6981(70)90018-1.
  • Sahu, V., and B. R. Gurjar. 2019. Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res. 31 (5):475–490. 490. doi: 10.1080/09603123.2019.1668916.
  • Sankhyan, S., S. Patel, E. F. Katz, P. F. Decarlo, D. K. Farmer, W. W. Nazaroff, and M. E. Vance. 2021. Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. Environ. Sci. Process. Impacts. 23 (10):1476–87. doi: 10.1039/D1EM00283J.
  • Sankhyan, S., J. K. Witteman, S. Coyan, S. Patel, and M. E. Vance. 2022. Assessment of PM 2.5 concentrations, transport, and mitigation in indoor environments using low-cost air quality monitors and a portable air cleaner. Environ. Sci: Atmos. 2 (4):647–58. doi: 10.1039/D2EA00025C.
  • Sayahi, T., D. Kaufman, T. Becnel, K. Kaur, A. E. Butterfield, S. Collingwood, Y. Zhang, P. E. Gaillardon, and K. E. Kelly. 2019. Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environ. Pollut. 255 (Pt 1):113131. doi: 10.1016/J.ENVPOL.2019.113131.
  • Sousan, S., K. Koehler, G. Thomas, J. H. Park, M. Hillman, A. Halterman, and T. M. Peters. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 50 (5):462–73. doi: 10.1080/02786826.2016.1162901/SUPPL_FILE/UAST_A_1162901_SM9028.DOCX.
  • Stanaway, J. D., A. Afshin, E. Gakidou, S. S. Lim, D. Abate, K. H. Abate, C. Abbafati, N. Abbasi, H. Abbastabar, F. Abd-Allah, et al. 2018. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries andterritories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392 (10159):1923–94. doi: 10.1016/S0140-6736(18)32225-6.
  • Thakur, A. K., and S. Patel. 2023. Indoor air quality in Urban India: current status, research gap, and the way forward. Environ. Sci. Technol. Lett. 10 (12):1146–58. doi: 10.1021/ACS.ESTLETT.3C00636/SUPPL_FILE/EZ3C00636_SI_001.PDF.
  • Wesseling, Ruiter, Blokhuis, Drukker, Weijers, Volten, Vonk, Gast, Voogt, Zandveld, van Ratingen. 2019. Development and implementation of a platform for public information on air quality, sensor measurements, and citizen science. Atmosphere 10 (8):445. doi: 10.3390/atmos10080445.
  • Zheng, T., M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E. Carlson. 2018. Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmos. Meas. Tech. 11 (8):4823–46. doi: 10.5194/amt-11-4823-2018.
  • Zou, Y., J. D. Clark, and A. A. May. 2021. Laboratory evaluation of the effects of particle size and composition on the performance of integrated devices containing Plantower particle sensors. Aerosol Sci. Technol. 55 (7):848–58. doi: 10.1080/02786826.2021.1905148/SUPPL_FILE/UAST_A_1905148_SM7876.PDF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.