218
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Suppression of short-range exposure to infectious aerosols using multiple paths of midair ultrasound acoustic streaming

& ORCID Icon
Pages 796-811 | Received 20 Nov 2023, Accepted 07 Apr 2024, Published online: 07 May 2024

References

  • Archer, J., L. P. McCarthy, H. E. Symons, N. A. Watson, C. M. Orton, W. J. Browne, J. Harrison, B. Moseley, K. E. J. Philip, J. D. Calder, et al. 2022. Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking, and singing. Interface Focus. 12 (2):20210078. doi:10.1098/rsfs.2021.0078.
  • Bale, R., A. Iida, M. Yamakawa, C. Li, and M. Tsubokura. 2022. Quantifying the COVID19 infection risk due to droplet/aerosol inhalation. Sci. Rep. 12 (1):11186. doi:10.1038/s41598-022-14862-y.
  • Bartels, J., C. F. Estill, I. Chen, and D. Neu. 2022. Laboratory study of physical barrier efficiency for worker protection against SARS-CoV-2 while standing or sitting. Aerosol Sci. Technol. 56 (3):295–303. doi:10.1080/02786826.2021.2020210.
  • Cermak, R., A. K. Melikov, L. Forejt, and O. Kovar. 2006. Performance of Personalized Ventilation in Conjunction with Mixing and Displacement Ventilation. HVAC&R Res. 12 (2):295–311. doi:10.1080/10789669.2006.10391180.
  • Chen, W., N. Zhang, J. Wei, H. Yen, and Y. Li. 2020. Short-range airborne route dominates exposure of respiratory infection during close contact. Build. Environ. 176:106859. doi:10.1016/j.buildenv.2020.106859.
  • Chen, Y., B. Raphael, and S. C. Sekhar. 2012. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 18 (6):1136–52. doi:10.1080/10789669.2012.710059.
  • Cowger, T. L,., J. Murray, M. T. Clarke, B. O. Bassett, S. M. Ojikutu, N. Sánchez, K. T. Linos, and Hall, E. J. 2022. Lifting Universal Masking in Schools – Covid-19 Incidence among Students and Staff. N Engl. J. Med. 387 (21):1935–46. doi:10.1056/NEJMoa2211029.
  • Eckart, C. 1948. Vortices and Streams Caused by Sound Waves. Phys. Rev. 73 (1):68–76. doi:10.1103/PhysRev.73.68.
  • Eykelbosh, A. 2021. A rapid review of the use of physical barriers in non-clinical settings and COVID-19 transmission. National Collaborating Centre for Environmental Health (NCCEH), Vancouver, BC. Accessed December 25, 2021.
  • Federation of European Heating Ventilation and Air Conditioning Associations. 2021. REHVA COVID19 guidance version 4.1. Federation of European Heating Ventilation and Air Conditioning Associations. Accessed January 21, 2023. https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf
  • Gregson, F. K. A., N. A. Watson, C. M. Orton, A. E. Haddrell, L. P. McCarthy, T. J. R. Finnie, N. Gent, G. C. Donaldson, P. L. Shah, J. D. Calder, et al. 2021. Comparing aerosol concentrations and particle size distributions generated by singing, speaking, and breathing. Aerosol Sci. Technol. 55 (6):681–91. doi:10.1080/02786826.2021.1883544.
  • Gupta, J. K., C. Lin, and Q. Chen. 2010. Characterizing exhaled airflow from breathing and talking. Indoor Air. 20 (1):31–9. doi:10.1111/j.1600-0668.2009.00623.x.
  • Hasegawa, K., L. Qiu, A. Noda, S. Inoue, and H. Shinoda. 2017. Electronically steerable ultrasound-driven long narrow air stream. Appl. Phy. Lett. 111 (6):064104. doi:10.1063/1.4985159.
  • Hasegawa, K., L. Qiu, and H. Shinoda. 2018. Midair Ultrasound Fragrance Rendering. IEEE Trans. Vis. Comput. Graph. 24 (4):1477–85. doi:10.1109/TVCG.2018.2794118.
  • Hasegawa, K., H. Yuki, and H. Shinoda. 2019. Curved acceleration path of ultrasound-driven airflow. J. Appl. Phy. 125 (5):054902. doi:10.1063/1.5052423.
  • Kamakura, T., K. Yasuda, and Y. Kumamoto. 1999. Unified description of second-order phenomena in sound waves. Electron. Comm. Jpn. Pt. III. 82 (2):76–82. doi:10.1002/(SICI)1520-6440(199902)82:2<76::AID-ECJC9>3.0.CO;2-Q.
  • Katramiz, E., N. Ghaddar, K. Ghali, D. Al-Assaad, and S. Ghani. 2021. Effect of individually controlled personalized ventilation on cross-contamination due to respiratory activities. Build. Environ. 194:107719. doi:10.1016/j.buildenv.2021.107719.
  • Kitano, M., and K. Hasegawa. 2023. Airborne ultrasound focusing aperture with binary amplitude mask over planar ultrasound emissions. J. Appl. Phy. 133 (14):144901. doi:10.1063/5.0140604.
  • Lessler, J., M. K. Grabowski, K. H. Grantz, E. Badillo-Goicoechea, C. J. E. Metcalf, C. Lupton-Smith, A. S. Azman, and E. A. Stuart. 2021. Household COVID-19 risk and in-person schooling. Science 372 (6546):1092–7. doi:10.1126/science.abh2939.
  • Li, W., A. Chong, B. Lasternas, T. G. Peck, and K. W. Tham. 2022. Quantifying the effectiveness of desk dividers in reducing droplet and airborne virus transmission. Indoor Air. 32 (1):e12950. doi:10.1111/ina.12950.
  • Li, X,., N. Niu, and Gao, J. 2013. Co-occupant’s exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems. Indoor Air. 23 (2):162–71. doi:10.1111/ina.12005.
  • Lighthill, J. 1978. Acoustic streaming. J. Sound Vib. 61 (3):391–418. doi:10.1016/0022-460X(78)90388-7.
  • Lindsley, W. G., F. M. Blachere, D. H. Beezhold, R. E. Thewlis, B. Noorbakhsh, S. Othumpangat, W. T. Goldsmith, C. M. McMillen, M. E. Andrew, C. N. Burrell, et al. 2016. Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza Other Respir. Viruses. 10 (5):404–13. doi:10.1111/irv.12390.
  • Liu, L., Y. Li, P. V. Nielsen, J. Wei, and R. L. Jensen. 2017. Short-range airborne transmission of expiratory droplets between two people. Indoor Air. 27 (2):452–62. doi:10.1111/ina.12314.
  • Marr, L. C., and J. W. Tang. 2021. A Paradigm Shift to Align Transmission Routes With Mechanisms. Clin. Infect. Dis. 73 (10):1747–9. doi:10.1093/cid/ciab722.
  • Melikov, A. K. 2004. Personalized Ventilation. Indoor Air. 14 (s7):157–67. doi:10.1111/j.1600-0668.2004.00284.x.
  • Melikov, A. K., and G. L. Knudsen. 2007. Human Response to an Individually Controlled Microenvironment. HVAC&R Research 13 (4):645–60. doi:10.1080/10789669.2007.10390977.
  • Milton, D. K. 2020. A Rosetta Stone for Understanding Infectious Drops and Aerosols. J. Pediatric Infect. Dis. Soc. 9 (4):413–5. doi:10.1093/jpids/piaa079.
  • Morawska, L., and J. Cao. 2020. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139:105730. doi:10.1016/j.envint.2020.105730.
  • Morens, D. M., P. Daszak, H. Markel, and J. K. Taubenberger. 2020. Pandemic COVID-19 Joins History’s Pandemic Legion. mBio 11 (3):e00812-20. doi:10.1128/mBio.00812-20.
  • Nyborg, W. L. 1953. Acoustic Streaming due to Attenuated Plane Waves. Journal of the Acoustical Society of America 25 (1):68–75. doi:10.1121/1.1907010.
  • Olmedo, I., P. V. Nielsen, M. Ruiz de Adana, R. L. Jensen, and P. Grzelecki. 2012. Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies. Indoor Air. 22 (1):64–76. doi:10.1111/j.1600-0668.2011.00736.x.
  • Pantelic, J., G. N. Sze-To, K. W. Tham, C. Y. H. Chao, and Y. C. M. Khoo. 2009. Personalized ventilation as a control measure for airborne transmissible disease spread. J. R Soc. Interface 6 (Suppl 6):S715–S726. doi:10.1098/rsif.2009.0311.focus.
  • Prentiss, M., A. Chu, and K. K. Berggren. 2020. Superspreading events without superspreaders: Using high attack rate events to estimate N0 for airborne transmission of COVID-19. medRxiv. doi:10.1101/2020.10.21.20216895.
  • Rakkolainen, I., E. Freeman, A. Sand, R. Raisamo, and S. Brewster. 2021. A survey of mid-air ultrasound haptics and its applications. IEEE Trans. Haptics. 14 (1):2–19. doi:10.1109/TOH.2020.3018754.
  • Smagowska, B., and M. Pawlaczyk-Łuszczyńska. 2013. Effects of ultrasonic noise on the human body – A bibliographic review. Int. J. Occup. Saf. Ergon. 19 (2):195–202. doi:10.1080/10803548.2013.11076978.
  • Stettler, M. E. J., R. T. Nishida, P. M. de Oliveira, L. C. C. Mesquita, T. J. Johnson, E. R. Galea, A. Grandison, J. Ewer, D. Carruthers, D. Sykes, et al. 2022. Source terms for benchmarking models of SARS-CoV-2 transmission via aerosols and droplets. R Soc. Open Sci. 9 (5):212022. doi:10.1098/rsos.212022.
  • Sun, C., and Z. Zhai. 2020. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 62:102390. doi:10.1016/j.scs.2020.102390.
  • Suzuki, S., S. Inoue, M. Fujiwara, Y. Makino, and H. Shinoda. 2021. AUTD3: Scalable airborne ultrasound tactile display. IEEE Trans. Haptics. 14 (4):740–9. doi:10.1109/TOH.2021.3069976.
  • Verma, S., M. Dhanak, and J. Frankenfield. 2020. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys. Fluids (1994)32 (6):061708. doi:10.1063/5.0016018.
  • Wei, J., and Y. Li. 2016. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control. 44 (9 Suppl):S102–S108. doi:10.1016/j.ajic.2016.06.003.
  • Wiens, K. E., C. P. Smith, E. Badillo-Goicoechea, K. H. Grantz, M. K. Grabowski, A. S. Azman, E. A. Stuart, and J. Lessler. 2022. In-person schooling and associated COVID-19 risk in the United States over spring semester 2021. Sci. Adv. 8 (16):eabm9128. doi:10.1126/sciadv.abm9128.
  • Xu, C., and L. Liu. 2018. Personalized ventilation: One possible solution for airborne infection control in highly occupied space. Indoor Built Environ. 27 (7):873–6. doi:10.1177/1420326X18777383.
  • Xu, C,., L. Wei, L. Liu, W. Su, Y. Liu, P. V. Wang, and Nielsen, X. 2020. Effects of personalized ventilation interventions on airborne infection risk and transmission between occupants. Build. Environ. 180:107008. doi:10.1016/j.buildenv.2020.107008.
  • Xu, J., C. Wang, S. C. Fu, and C. Y. H. Chao. 2022. The effect of head orientation and personalized ventilation on bioaerosol deposition from a cough. Indoor Air. 32 (1):e12973. doi:10.1111/ina.12973.