52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Feasibility study of femur bone with continuum model

, ORCID Icon, & ORCID Icon
Pages 355-366 | Received 11 Sep 2023, Accepted 23 Mar 2024, Published online: 16 Apr 2024

References

  • Habibi M, Mobasseri S, Zare A, et al. Drug delivery with therapeutic lens for the glaucoma treatment in the anterior eye chamber: a numerical simulation. Biomed Eng Adv. 2022;3:100032. doi: 10.1016/j.bea.2022.100032.
  • Mobasseri S, Zare A, Janghorban M. Dynamic behavior of dragonfly wing veins including the role of hemolymph. J Mech Med Biol. 2023;2350093. doi: 10.1142/S0219519423500938.
  • Hay JG. Biomechanics of sports techniques. Hoboken, New Jersey, United States: Prentice-Hall, Englewood Cliffs; 1982.
  • Katz Y, Dahan G, Sosna J, et al. Scanner influence on the mechanical response of QCT-based finite element analysis of long bones. J Biomech. 2019;86:149–159. doi: 10.1016/j.jbiomech.2019.01.049.
  • Libonati F, Vergani L. Understanding the structure–property relationship in cortical bone to design a biomimetic composite. Compos Struct. 2016;139:188–198. doi: 10.1016/j.compstruct.2015.12.003.
  • Xu Y, Weng H, Ju X, et al. A method for predicting mechanical properties of composite microstructure with reduced dataset based on transfer learning. Compos Struct. 2021;275:114444. doi: 10.1016/j.compstruct.2021.114444.
  • Mehboob H, Chang S-H. Application of composites to orthopedic prostheses for effective bone healing: a review. Compos Struct. 2014;118:328–341. doi: 10.1016/j.compstruct.2014.07.052.
  • Mehboob A, Chang S-H. Effect of initial micro-movement of a fracture gap fastened by composite prosthesis on bone healing. Compos Struct. 2019;226:111213. doi: 10.1016/j.compstruct.2019.111213.
  • Libonati F, Colombo C, Vergani L. Design and characterization of a biomimetic composite inspired to human bone. Fatigue Fract Eng Mat Struct. 2014;37(7):772–781. doi: 10.1111/ffe.12172.
  • Libonati F, Vellwock AE, Ielmini F, et al. Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Sci Rep. 2019;9(1):3142. doi: 10.1038/s41598-019-39030-7.
  • Mobasseri S, Karami B, Sadeghi M, et al. Bending and torsional rigidities of defected femur bone using finite element method. Biomed Eng Adv. 2022;3:100028. doi: 10.1016/j.bea.2022.100028.
  • Mobasseri S, Sadeghi M, Janghorban M, et al. Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects. Biomater Biomed Eng. 2020;5(1):25.
  • Akrami M, Craig K, Dibaj M, et al. A three-dimensional finite element analysis of the human hip. J Med Eng Technol. 2018;42(7):546–552. doi: 10.1080/03091902.2019.1576795.
  • Homaei H, Jafari Fesharaki J. Mechanical behaviour of femoral prosthesis with various cross-section shape, implant configurations and material properties. J Med Eng Technol. 2021;45(3):161–169. doi: 10.1080/03091902.2021.1891308.
  • Gujar RA, Warhatkar HN. Estimation of mass apparent density and Young’s modulus of femoral neck-head region. J Med Eng Technol. 2020;44(7):378–388. doi: 10.1080/03091902.2020.1799093.
  • Mazess RB, Barden HS, Drinka PJ, et al. Influence of age and body weight on spine and femur bone mineral density in US white men. J Bone Miner Res. 2020;5(6):645–652. doi: 10.1002/jbmr.5650050614.
  • Greenspan SL, Maitland LA, Myers ER, et al. Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res. 2020;9(12):1959–1965. doi: 10.1002/jbmr.5650091216.
  • Lansdown D, Ma CB. The influence of tibial and femoral bone morphology on knee kinematics in the ACL injured knee. Clin Sports Med. 2018;37(1):127–136. doi: 10.1016/j.csm.2017.07.012.
  • Tripathi AM, Upadhyay A, Rajput AS, et al. editors. Automatic detection of fracture in femur bones using image processing. In: 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). IEEE; 2017.
  • Ruiz JC, Mandel C, Garabedian M. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Miner Res. 2020;10(5):675–682. doi: 10.1002/jbmr.5650100502.
  • Chen H, Zhou X, Shoumura S, et al. Age-and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int. 2010;21(4):627–636. doi: 10.1007/s00198-009-0993-z.
  • Kannus P, Järvinen M, Sievänen H, et al. Reduced bone mineral density in men with a previous femur fracture. J Bone Miner Res. 2020;9(11):1729–1736. doi: 10.1002/jbmr.5650091109.
  • Simões JA, Marques AT, Jeronimidis G. Design of a controlled-stiffness composite proximal femoral prosthesis. Compos Sci Technol. 2000;60(4):559–567. doi: 10.1016/S0266-3538(99)00155-4.
  • Kumar A, Jaiswal H, Garg T, et al. Free vibration modes analysis of femur bone fracture using varying boundary conditions based on FEA. Procedia Mater Sci. 2014;6:1593–1599. doi: 10.1016/j.mspro.2014.07.142.
  • Bhandari A, Gangil B, Ahmad F. editors. Finite element analysis based on mechanical vibration characteristics of femur bone. In 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM). IEEE; 2020. doi: 10.1109/ICACCM50413.2020.9213046.
  • Sadeghi R, Bakhtiari-Nejad F, Goudarzi T, editors. Vibrational analysis of human femur bone International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers; 2018. doi: 10.1115/DETC2018-85114.
  • Kharatmal SK, Ravindrannair P, Sridhar K, et al. Structural and vibrational analysis of femur bone using FEA. Recent trends in mechanical engineering. Springer; 2020. p. 535–551.
  • Kumar PB, Parhi DR. Vibrational characterization of a human femur bone and its significance in the designing of artificial implants. WJE. 2017;14(3):222–226. doi: 10.1108/WJE-07-2016-0033.
  • Kumar KN, Tandon T, Silori P, et al. Biomechanical stress analysis of a human femur bone using ANSYS. Mater Today: Proc. 2015;2(4–5):2115–2120.
  • Gok K, Taspinar F, Inal S, et al. Importance of sidebar-bone spacing during the application of pertrochanteric fixator on femoral intertrochanteric fracture model; comparison of the biomechanical effects using finite element method. Biomed Eng Appl Basis Common. 2015;27(03):1550030.
  • Kshirsagar BD, Goud SC, Khan SN. Vibration analysis of femur bone by using consistent mass matrices and fast fourier transform analyzer. Mater Today: Proc. 2020;26:2254–2259.
  • Mughal U, Khawaja HA, Moatamedi M. Finite element analysis of human femur bone. Int J Multiphys. 2015;9(2):101–108. doi: 10.1260/1750-9548.9.2.101.
  • Mathukumar S, Nagarajan V, Radhakrishnan A. Analysis and validation of femur bone data using finite element method under static load condition. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019;233(16):5547–5555. doi: 10.1177/0954406219856028.
  • Zdero R, Bougherara H, Dubov A, et al. The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proc Inst Mech Eng H. 2010;224(7):831–840. doi: 10.1243/09544119JEIM702.
  • Gupta A, Tse KM, editors. Finite element analysis on vibration modes of femur bone. In: Proceedings of the International Conference on Advances in Mechanical Engineering, NCR-Delhi Region, India; 2013.
  • Harris MD. The geometry and biomechanics of normal and pathomorphologic human hips. Salt Lake City: University of Utah; 2013.
  • Kalaiyarasan A, Sankar K, Sundaram S. Finite element analysis and modeling of fractured femur bone. Mater Today: Proc. 2020;22:649–653.
  • Mobasseri S, Mobasseri MA. Comparative study between ABS and disc brake system using finite element method. In International Conference on Researches in Science and Engineering; 2016/7/28. Istanbul University, Turkey; 2017.
  • Bhat BK, Adhikari R, Acharya KKV. Numerical investigation on human knee joint for verifying intactness of anterior cruciate ligament. J Inst Eng India Ser C. 2020;101(5):861–866. doi: 10.1007/s40032-020-00582-7.
  • Goode D, Dhaliwal R, Mohammadi H. Valve interstitial cells under impact load, a mechanobiology study. J Med Eng Technol. 2023;47(1):54–66. doi: 10.1080/03091902.2022.2097328.
  • Ghouchani A, Rouhi G, Ebrahimzadeh MH. Investigation on distal femoral strength and reconstruction failure following curettage and cementation: in-vitro tests with finite element analyses. Comput Biol Med. 2019;112:103360. doi: 10.1016/j.compbiomed.2019.103360.
  • Keyak JH, Kaneko TS, Tehranzadeh J, et al. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 2005;437(437):219–228. doi: 10.1097/01.blo.0000164400.37905.22.
  • Mirzaei M, Keshavarzian M, Naeini V. Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone. 2014;64:108–114. doi: 10.1016/j.bone.2014.04.007.
  • Mirzaei M, Alavi F, Allaveisi F, et al. Linear and nonlinear analyses of femoral fractures: computational/experimental study. J Biomech. 2018;79:155–163. doi: 10.1016/j.jbiomech.2018.08.003.
  • Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 2003;25(9):781–787. doi: 10.1016/s1350-4533(03)00081-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.