Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 52, 2017 - Issue 2
268
Views
8
CrossRef citations to date
0
Altmetric
ARTICLES

Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data

&
Pages 138-146 | Received 26 Jul 2016, Accepted 09 Sep 2016, Published online: 07 Nov 2016

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for malathion, September 2003. Atlanta, GA, 2003. Available at http://www.atsdr.cdc.gov/toxprofiles/tp154.pdf. (accessed Jul 2016).
  • International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 112: Some Organophosphate Insecticides and Herbicides: Diazinon, Glyphosate, Malathion, Parathion, and Tetrachlorvinphos. IARC: Lyon, France, 2015; 1–124. Available at http://monographs.iarc.fr/ENG/Monographs/vol112/mono112-07.pdf. (accessed Jul 2016).
  • U.S. Environmental Protection Agency (EPA). Registration Eligibility Decision (RED) for Malathion. Revised May 2009 EPA 738-R-06-030, July 2016, U.S. EPA Office of Prevention, Pesticides and Toxic Substances: Washington, DC, 2006.
  • U.S. Environmental Protection Agency (EPA). Reregistration Eligibility Decision (RED) for Malathion. Case No. 0248, EPA 738-R-06-030. U.S. EPA Office of Prevention, Pesticides and Toxic Substances: Washington, DC, 2009. Availalbe at https://archive.epa.gov/pesticides/reregistration/web/pdf/malathion-red-revised.pdf. (accessed Jul 2016).
  • California Department of Health Services (CalDHS). Health Risk Assessment of Aerial Application of Malathion-Bait. CalDHS: Berkeley, CA, 1991.
  • California Department of Pesticide Regulation (CalDPR). Malathion Dietary Exposure Assessment. Technical Report by Hathaway TR, Carr WC, February 4, 1993; CalDPR Medical Toxicology Branch: Sacramento, CA, 1993. Available at http://www.cdpr.ca.gov/docs/risk/rcd/mala_ab2161.pdf. (accessed Jul 2016).
  • California Department of Pesticide Regulation (CalDPR). Physiologically-Based Pharmacokinetic (PB-PK) Modeling for Dermal Absorption of Pesticide (Malathion) in Man, Technical Report HS–1678, by Dong MH, Ross JH, Thongsinthusak T, Sanborn JR, Wang RGM; California Department of Pesticide Regulation (CalDPR). Worker Health and Safety Branch: Sacramento, CA, 1996.
  • Machera, K.; Goumenou, M.; Kapetanakis, E.; Kalamarakis, A.; Glass, C.R. Determination of potential dermal and inhalation operator exposure to malathion in greenhouses with the whole body dosimetry method. Ann. Occup. Hyg. 2003, 47(1), 61–70.
  • U.S. Environmental Protection Agency (EPA). Malathion Exposure During Lice Treatment: Use of Exposure Related Dose Estimating Model (ERDEM) and Factors Relating to the Evaluation of Risk Report by Power FW, Dary CC, Knaak JB, Tornero-Velez R, Blancato JN. EPA/600/R-07/023, NTIS PB2007-106971. U.S. EPA, Office of Research and Development, National Exposure Research Laboratory: Las Vegas, NV, 2007.
  • U.S. Environmental Protection Agency (EPA). Acute Exposure Guideline Levels (AEGLs) for Malathion (CAS Reg. No. 121-75-5), Interim. Interim: 09/2009. U.S. EPA, Office of Pollution Prevention and Toxics: Washington, DC, 2009. Available at https://www.epa.gov/sites/production/files/2014-08/documents/malathion_interim_sep_09_v1.pdf ( accessed Jul 2016).
  • Krieger, R.I.; Bernard, C.E.; Dinoff, T.M.; Fell, L.; Osimitz, T.G.; Ross, J.H.; Thongsinthusak, T. Biomonitoring and whole body cotton dosimetry to estimate potential human dermal exposure to semivolatile chemicals. J. Expos. Anal. Environ. Epidemiol. 2000, 10, 50–57.
  • Tuomainen, A.; Kangas, J.A., Meuling, W.J, Glass, R.C. Monitoring of pesticide applicators for potential dermal exposure to malathion and biomarkers in urine. Toxicol. Lett. 2002, 134(1–3), 125–132.
  • Edwards, J.W.; Lee, S.G.; Heath, L.M.; Pisaniello, D.L. Worker exposure and a risk assessment of malathion and fenthion used in the control of Mediterranean fruit fly in South Australia. Environ. Res. 2007, 103(1), 38–45.
  • Li, Y.; Chen, L.; Chen, Z.; Coehlo, J.; Cui, L.; Liu, Y.; Lopez, T.; Sankaran, G.; Vega, H.; Krieger, R. Glove accumulation of pesticide residues for strawberry harvester exposure assessment. Bull. Environ. Contam. Toxicol. 2011, 86(6), 615–620.
  • Wester, R.C.; Maibach, H.I.; Bucks, D.A.W.; Guy, R.H. Malathion percutaneous absorption after repeated administration to man. Toxicol. Appl. Pharmacol. 1983, 68, 116–119.
  • U.S. EPA. Dermal Exposure Assessment: Principles and Applications. EPA 600/8–91-/011-B January 1992, Interim Report; U.S. Environmental Protection Agency (EPA), Office of Health and Environmental Assessment: Washington, DC, 1992.
  • Poet, T.S. Assessing dermal absorption. Toxicol. Sci. 2000, 58(1), 1–2.
  • International Programme on Chemical Safety (IPCS). Environmental Health Criteria 235: Dermal Absorption. World Health Organization (WHO). IPCS: Geneva, 2006, 35–37, 70-72, 109, 125. Available at http://www.inchem.org/documents/ehc/ehc/ehc235.pdf (accessed Jul 2016).
  • Holmgaard, R.; Nielsen, J.B. Dermal Absorption of Pesticides – Evaluation of Variability and Prevention, Pesticides Research No. 124 2009; Danish Environmental Protection Agency: Copenhagen, Denmark, 2009. Available at http://www2.mst.dk/udgiv/publications/2009/978-87-7052-980-8/pdf/978-87-7052-981-5.pdf. (accessed Jul 2016).
  • Dary, C.C.; Blancato, J.N.; Castles, M.; Reddy, V.; Cannon, M.; Saleh, M.A.; Cash, G.G. Dermal absorption and disposition of formulations of malathion in Sprague-Dawley rats and humans. In Biomarkers of Human Exposure to Pesticides (ACS Symp Ser 542, Chapter 15); Saleh, M.A.; Blancato, J.N.; Nauman, C.H., Eds.; American Chemical Society: Washington, DC, 1993; 231–263.
  • Rabovsky, J.; Brown, J.P. Malathion metabolism and disposition in mammals. J. Occup. Med. Toxicol. 1993, 2(1), 131–168.
  • Dong, M.H. Microcomputer programs for physiologically-based pharmacokinetic (PB-PK) modeling. Comput. Meth. Prog. Biomed. 1994, 45, 213–221.
  • Dong, M.H.; Draper, W.M.; Papanek, P.J.; Ross, J.H.; Woloshin, K.A.; Stephens, R.D. Estimating malathion doses in California's medfly eradication campaign using a physiologically based pharmacokinetic model. In Environmental Epidemiology (Adv Chem Ser 241, Chapter 14); Draper, W.M., Ed.; American Chemistry Society; Washington, DC, 1994, 189–208.
  • Dong, M.H.; Thongsinthusak, T.; Ross, J.H.; Krieger, R.I. Validation of a physiologically-based pharmacokinetic (PB-PK) model used to simulate absorbed malathion doses in humans. 209th ACS National Meeting, American Chemistry Society, Anaheim, CA, April 2–6, 1995, S 209 (Abrastact 065).
  • Dong, M.H.; Ross, J.H.; Thongsinthusak, T.; Krieger, R.I. Use of spot urine sample results in physiologically based pharmacokinetic modeling of absorbed malathion doses in humans. In Biomarkers for Agrochemicals and Toxic Substances: Applications and Risk Assessment (ACS Symp. Ser. 643, Chapter 17) Blancato, J.N.; Brown, R.N.; Dary, C.C.; Saleh, M.A., Eds.; American Chemical Society: Washington, DC, 1996; 229–243.
  • Bouchard, M.; Gosselin, N.H.; Brunet, R.C.; Samuel, O.; Dumoulin, M.J.; Carrier, G. A toxicokinetic model of malathion and its metabolites as a tool to assess human exposure and risk through measurements of urinary biomarkers. Toxicol. Sci. 2003, 73(1), 182–194.
  • U.S. Environmental Protection Agency (EPA). Dermal Exposure Assessment: A Summary of EPA Approaches. EPA 600/R-07/040F. U.S. EPA, National Center for Environmental Assessment, Office of Research and Development: Washington, DC, 2007.
  • Frasch, H.F.; Dotson, G.S.; Bunge, A.L.; Chen, C-P.; Cherrie, J.W.; Kasting, G.B.; Kissel, J.C.; Sahmel, J.; Semple, S.; Wilkinson, S. Analysis of finite dose dermal absorption data: Implications for dermal exposure assessment. J. Expos. Sci. Environ. Epidemiol. 2014, 24, 65–73.
  • Aston, L.S. Determination of Residues of Malathion Dicarboxylic Acid (DCA), Malathion Monocarboxylic Acid (MCA), Dimethyl Phosphate (DMP), Dimethyl Thiophosphate (DMTP), and Dimethyl Dithiophosphate (DMDTP) in Human Urine. Project ID PTL119801. Pacific Toxicology Laboratories (PTL): Woodland Hills, CA, 2000.
  • Wolfram Research. Wolfram Mathematica® 10.3 Wolfram Language and System Documentation Center www.wolfram.com. Wolfram Research, Inc.: Champaign, IL, 2016. Available at http://reference.wolfram.com/language/. (accessed Jul 2016).
  • Rachadi, T. Locust Control Handbook: Guide Practique. Center for Rural and Agricultural Cooperation (CTA). Éditions Quæ: Versailles, France, 2010, 35. Available at http://publications.cta.int/media/publications/downloads/1613_PDF.pdf. (accessed Jul 2016).
  • Rosenberg, A.; Williams, R.; Cohen, G. Interaction forces involved in wetting of human skin. J. Pharmaceut. Sci. 1973, 62(6), 920–922.
  • Tsutsumi, H.; Utsugi, T.; Hayashi, S. Study on the occlusivity of oil films. J. Soc. Cosmet. Chem. 1979, 30, 345–356.
  • Teichman, A.; Paissavini, M.; Ferrero, L.; Dehais, A.; Zastrow, L. Investigation of the homogeneity of the distribution of sunscreen formulations on the human skin: characterization and comparison of two different methods. J. Biomed. Opt. 2006, 11(6), 064005 (November/December 2006). Available at http://biblioscreen.helioscreen.fr/Documents%20helioscreen/JBO2006.pdf. (accessed Jul 2016).
  • Weigmann, H-J.; Schanzer, S.; Vergou, T.; Antoniou, C.; Sterry, W.; Lademann, J. Quantification of the inhomogeneous distribution of topically applied substances by optical spectroscopy: definition of a factor of inhomogeneity. Skin Pharmacol. Physiol. 2012, 25, 118–123.
  • Boutsiouki, P.; Clough, G.F. Modulation of microvascular function following low-dose exposure to the organophosphorous compound malathion in human skin in vivo. J. Appl. Physiol. 2004, 97(3), 1091–1097.
  • Boutsiouki, P.; Thompson, J.P.; Clough, G.F. Effects of local blood flow on the percutaneous absorption of the organophosphorus compound malathion: a microdialysis study in man. Arch. Toxicol. 2001, 75(6), 321–328.
  • Boutsiouki, P.; Georgiou, S.; Clough, G.F. Recovery of nitric oxide from acetylcholine-mediated vasodilatation in human skin in vivo. Microcirculation 2004, 11(3), 249–259.
  • Hammarlund, A.; Olsson, P.; Pipkorn, U. Dermal blood flow after local challenges with allergen, histamine, bradykinin and compound 48/80. Clin. Exp. Allergy 1991, 21(3), 333–342.
  • Van der Schueren, B.J.; de Hoon, J.N.; Vanmolkot, F.H.; Van Hecken, A.; Depre, M.; Kane, S.A.; De Lepeleire, I.; Sinclair, S.R. Reproducibility of the capsaicin-induced dermal blood flow response as assessed by laser Doppler perfusion imaging. Br. J. Clin. Pharmacol. 2007, 64(5), 580–590.
  • Khambam, S.K.R.; Naidu, M.U.R.; Rani, P.U.; Rao, T.R.K. Determination of capsaicin induced increase in dermal blood flow using laser doppler flowmetry technique. Pharmacol. Pharm. 2011, 2, 159–163.
  • Nielsen, T.A.; da Silva, L.B.; Arendt-Nielsen, L.; Gazerani, P. The effect of topical capsaicin-induced sensitization on heat-evoked cutaneous vasomotor responses. Int. J. Physiol. Pathophysiol. Pharmacol. 2013, 5(3), 148–160.
  • Gordon, S.M.; Wallace, L.A.; Callahan, P.J.; Kenny, D.V.; Brinkman, M.C. Effect of water temperature on dermal exposure to chloroform. Environ. Health Perspect. 1998, 106(6), 337–345.
  • Corley, R.A.; Gordon, S.M.; Wallace, L.A. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol. Sci. 2000, 53(1), 13–23.
  • Hull, W. Heat-enhanced transdermal drug delivery: A survey paper. J. Appl. Res. Clin. Exp. Therap. 2002, 2, 1–9.
  • Petersen, K.K.; Rousing, M.L.; Jensen, C.; Arendt-Nielsen, L.; Gazerani, P. Effect of local controlled heat on transdermal delivery of nicotine. Int. J. Physiol. Pathophysiol. Pharmacol. 2011, 3(3), 236–242.
  • Oliveira, G.; Leverett, J.C.; Emamzadeh, M.; Lane, M.E. The effects of heat on skin barrier function and in vivo dermal absorption. Int. J. Pharm. 2014, 464(1–2), 145–151.
  • Nicolau, G.; Baughman, R.A.; Tonelli, A.; McWilliams, W.; Schiltz, J.; Yacobi, A. Deposition of viprostol (a synthetic PGE2 vasodilator) in the skin following topical administration to laboratory animals. Xenobiotica 1987, 17(9), 1113–1120.
  • Tur, E.; Maibach, H.I.; Guy, R.H. Percutaneous penetration of methyl nicotinate at three anatomic sites: Evidence for an appendageal contribution to transport? Skin Pharmacol. 1991, 4(4), 230–234.
  • Otberg, N.; Patzelt, A.; Rasulev, U.; Hagemeister, T.; Linscheid, M.; Sinkgraven, R.; Sterry, W.; Lademann, J. The role of hair follicles in the percutaneous absorption of caffeine. Br. J. Clin. Pharmacol. 2008; 65(4), 488–492.
  • Liu, X.; Grice, J.E.; Lademann, J.; Otberg, N.; Trauer, S.; Patzelt, A.; Roberts, M.S. Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br. J. Clin. Pharmacol. 2011, 72(5), 768–774.
  • Nayak, A.P.; Hettick, J.M.; Siegel, P.D.; Anderson, S.E.; Long, C.M.; Green, B.J, Beezhold, D.H. Toluene diisocyanate (TDI) disposition and co-localization of immune cells in hair follicles. Toxicol. Sci. 2014, 140(2), 327–337.
  • Botchkarev, V.A. Stress and the hair follicle: Exploring the connections. Am. J. Pathol. 2003, 162(3), 709–712.
  • Premkumar, L.S.; Sikand, P. TRPV1: A target for next generation analgesics. Curr. Neuropharmacol. 2008, 6(2), 151–163.
  • Abraham, T.S.; Chen, M.L.; Ma, S.X. TRPV1 expression in acupuncture points: Response to electroacupuncture stimulation. J. Chem. Neuroanat. 2011, 41(3), 129–236.
  • Wang, N.; Gibbons, C.H.; Freeman, R. Novel immunohistochemical techniques using discrete signal amplification systems for human cutaneous peripheral nerve fiber imaging. J. Histochem. Cytochem. 2011, 59(4), 382–390.
  • Knaak, J.B.; Dary, C.C.; Power, F.; Thompson, C.B.; Blancato, J.N. Physicochemical and biological data for the development of predictive organophosphorus pesticide QSARs and PBPK/PD models for human risk assessment. Crit. Rev. Toxicol. 2004, 34(2), 143–207.
  • Buratti, F.M.; Testai, E. Malathion detoxification by human hepatic carboxylesterases and its inhibition by isomalathion and other pesticides. J. Biochem. Mol. Toxicol. 2005, 19(6), 406–414.
  • California Environmental Protection Agency (CalEPA). Health Risk Assessment of Malathion Coproducts in Malathion-Bait Used for Agricultural Pest Eradication in Urban Areas—Supplemental to: Health Risk Assessment of Aerial Application of Malathion-Bait. CalEPA Office of Environmental Health Hazard Assessment (OEHHA): Sacramento, CA, 1997. Available at http://www.oehha.org/pesticides/pdf/malaco97.pdf. (accessed Jul 2016).
  • Jellinek, Schwartz, and Connolly, Inc. The Effects and Pharmacological Disposition of a Single Oral Dose of Malathion Administered to Human Volunteers. CHA Doc. No.: 299 FYF Amdt-4. Submitted to EPA on 5/17/00, MRID 45125601. Cheminova: Lemvig, Denmark, 2000. (As cited by Bouchard et al.[26])
  • U.S. Army Chemical Materials Agency. Characteristics of Nerve Agents: Fact Sheet. Aberdeen Proving Ground: Aberdeen, MD, 2007. Available at http://www.cma.army.mil/fndocumentviewer.aspx?docid=003676623. (accessed Jul 2016).
  • Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W. Background Chemistry for Chemical Warfare Agents and Decontamination Processes in Support of Delisting Waste Streams at the U.S. Army Dugway Proving Ground, Utah. ANL/EAD/TM-56. Argonne National Laboratory (ANL), Environmental Assessment Division: Argonne, IL, 1996. Available at http://www.osti.gov/scitech/servlets/purl/258187/. (accessed Jul 2016).
  • Hisatake, K.; Tanaka, S.; Aizawa, Y. Evaporation rate of water in a vessel. J. Appl. Phys. 1993, 73, 7395–7401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.