Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 6
45
Views
0
CrossRef citations to date
0
Altmetric
Articles

Vortex-assisted dispersive micro-solid-phase extraction using silica-supported Fe2O3-modified khat (Catha edulis) biochar nanocomposite followed by GC-MS for the determination of organochlorine pesticides in juice samples

ORCID Icon, , , &
Pages 285-299 | Received 23 Jan 2024, Accepted 19 Mar 2024, Published online: 30 Apr 2024

References

  • Siraj, J.; Ejeta, F. Analysis of Pesticide Residues in Fruits and Vegetables Using Gas Chromatography-Mass Spectrometry: A Case from West Omo and Bench-Sheko Zone, Southwest Ethiopia. Int. J. Environ. Anal. Chem. 2022, 00, 1–21.
  • Helou, K.; Harmouche-Karaki, M.; Karake, S.; Narbonne, J. F. A Review of Organochlorine Pesticides and Polychlorinated Biphenyls in Lebanon: Environmental and Human Contaminants. Chemosphere 2019, 231, 357–368. DOI: 10.1016/j.chemosphere.2019.05.109.
  • Omeje, J. S.; Asegbeloyin, J. N.; Ihedioha, J. N.; Ekere, N. R.; Ochonogor, A. E.; Abugu, H. O.; Alum, O. L. Monitoring of Pesticide Residues in Fresh Fruits and Vegetables Available in Nigerian Markets and Assessment of Their Associated Health Risks. Environ. Monit. Assess. 2022, 194, 516. DOI: 10.1007/s10661-022-10139-z.
  • Liang, C. P.; Sack, C.; McGrath, S.; Cao, Y.; Thompson, C. J.; Robin, L. P. US Food and Drug Administration Regulatory Pesticide Residue Monitoring of Human Foods: 2009-2017. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2021, 38, 1520–1538. DOI: 10.1080/19440049.2021.1934574.
  • Assefa, A. K.; Addisu, K. S.; Gadisa, C.; Abera, G. Effervescent Powder-Assisted Floating Organic Solvent-Based Dispersive Liquid-Liquid Microextraction for Determination of Organochlorine Pesticides in Water by GC–MS. Heliyon 2023, 9, e12954.
  • Ubol, R. N.; Sommit, N.; Kanthiya, P. Extraction of Organochlorine Pesticides from Honey Using Dispersive Liquid - Liquid Microextraction Technique and Determined by Gas Chromatography – Electron Capture Detector. Naresuan Univ. J. Sci. Technol. 2022,30, 24–37.
  • Zhang, H.; Li, Y.; H. P. Determination of 99 Pesticide Residues in Four Fruit Products by Gas Chromatography-Tandem Mass Spectrometry ZHANG. Chinese J. Pestic. Sci. 2023, 25, 193–209.
  • Zhao, L.; Szakas, T.; Churley, M.; Lucas, D. Multi-Class Multi-Residue Analysis of Pesticides in Edible Oils by Gas Chromatography-Tandem Mass Spectrometry Using Liquid-Liquid Extraction and Enhanced Matrix Removal Lipid Cartridge Cleanup. J. Chromatogr. A 2019, 1584, 1–12. DOI: 10.1016/j.chroma.2018.11.022.
  • Sharif, Z.; Man, Y. B. C.; Hamid, N. S. A.; Keat, C. C. Determination of Organochlorine and Pyrethroid Pesticides in Fruit and Vegetables Using Solid Phase Extraction Clean-up Cartridges. J. Chromatogr. A 2006, 1127, 254–261. DOI: 10.1016/j.chroma.2006.06.007.
  • Demirhan, B.; Kara, H. E. S.; Demirhan, B. E. Overview of Green Sample Preparation Techniques in Food Analysis. IntechOpen; 2017, pp 1–15.
  • He, Y. Liquid-Based Microextraction Techniques for Environmental Analysis. In Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists; 2012; Vol. 3, pp 835–862. The City University of New York, New York, USA, 2012 Elsevier Inc.
  • Aspromonte, J.; Lancioni, C.; Purcaro, G. Solid-Phase Microextraction—Gas Chromatography Analytical Strategies for Pesticide Analysis. Review. Methods Protoc 2022, 5, 88.
  • Islas, G.; Ibarra, I. S.; Hernandez, P.; Miranda, J. M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples : A Review. Int. J. Anal. Chem. 2017, 2017, 8215271–8215216. DOI: 10.1155/2017/8215271.
  • Fernandes, V. C.; Freitas, M.; Pacheco, J. P. G.; Oliveira, J. M.; Domingues, V. F.; Delerue-Matos, C. Magnetic Dispersive Micro Solid-Phase Extraction and Gas Chromatography Determination of Organophosphorus Pesticides in Strawberries. J. Chromatogr. A 2018, 1566, 1–12. DOI: 10.1016/j.chroma.2018.06.045.
  • Koel, M. In Do we Need Green Analytical Chemistry?; Royal Society of Chemistry, 2016. Institute of Chemistry, Tallinn University of Technology, Estonia.
  • Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive Micro-Solid Phase Extraction. TrAC - Trends Anal. Chem. 2019, 112, 226–233. DOI: 10.1016/j.trac.2018.12.005.
  • Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-Walled Carbon Nanotubes as Alternative Reversed-Dispersive Solid Phase Extraction Materials in Pesticide Multi-Residue Analysis with QuEChERS Method. J. Chromatogr. A 2012, 1225, 17–25. DOI: 10.1016/j.chroma.2011.12.070.
  • Ghorbani, M.; Aghamohammadhassan, M.; Ghorbani, H.; Zabihi, A. Trends in Sorbent Development for Dispersive Micro-Solid Phase Extraction. Microchem. J. 2020, 158, 105250. DOI: 10.1016/j.microc.2020.105250.
  • Song, X.; Zhang, R.; Xie, T.; Wang, S.; Cao, J.; Normal, H. Deep Eutectic Solvent Micro-Functionalized Graphene Assisted Dispersive Micro Solid-Phase Extraction of Pyrethroid Insecticides in Natural Products 1. Front. Chem. 2019, 7, 594. DOI: 10.3389/fchem.2019.00594.
  • Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of Organic and Inorganic Pollutants Removal by Biochar and Biochar-Based Composites. Biochar 2021, 3, 255–281. DOI: 10.1007/s42773-021-00101-6.
  • Pan, L.; Mao, L.; Zhang, H.; Wang, P.; Wu, C.; Xie, J.; Yu, B.; Sial, M. U.; Zhang, L.; Zhang, Y.; et al. Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Appl. Sci. 2022, 12, 11544. DOI: 10.3390/app122211544.
  • Liu, R.; Wang, H.; Han, L.; Hu, B.; Qiu, M. Reductive and Adsorptive Elimination of U(VI) Ions in Aqueous Solution by SFeS@Biochar Composites. Environ. Sci. Pollut. Res. Int. 2021, 28, 55176–55185. DOI: 10.1007/s11356-021-14835-0.
  • Igberase, V. I. Biochar Applications to the Remediation of Lead and Polychlorinated Biphenyl Contaminated Water. Front. Neurosci. 2021, 14, 1–13.
  • Stefanini-Oresic, L. Validation of Analytical Procedures: ICH Guidelines Q2(R2). Farm. Glas. 2022, 2, 1–34.
  • Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate from Aqueous Solutions. Chem. Eng. J. 2012, 210, 26–32. DOI: 10.1016/j.cej.2012.08.052.
  • Zheng, Y.; Zimmerman, A. R.; Gao, B. Comparative Investigation of Characteristics and Phosphate Removal by Engineered Biochars with Different Loadings of Magnesium, Aluminum, or Iron. Sci. Total Environ. 2020, 747, 141277. DOI: 10.1016/j.scitotenv.2020.141277.
  • Baig, S. A.; Zhu, J.; Muhammad, N.; Sheng, T.; Xu, X. Effect of Synthesis Methods on Magnetic Kans Grass Biochar for Enhanced as(III, V) Adsorption from Aqueous Solutions. Biomass Bioenergy 2014, 71, 299–310. DOI: 10.1016/j.biombioe.2014.09.027.
  • Lyu, H.; Tang, J.; Huang, Y.; Gai, L.; Zeng, E. Y.; Liber, K.; Gong, Y. Removal of Hexavalent Chromium from Aqueous Solutions by a Novel Biochar Supported Nanoscale Iron Sulfide Composite. Chem. Eng. J. 2017, 322, 516–524. DOI: 10.1016/j.cej.2017.04.058.
  • Zhao, F.; Shan, R.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y. Magnetically Recyclable Loofah Biochar by KMnO4 Modification for Adsorption of Cu(II) from Aqueous Solutions. ACS Omega. 2022, 7, 8844–8853. DOI: 10.1021/acsomega.1c07163.
  • Kumari, S.; Annamareddy, S. H. K. Treatment of Garage Wastewater Using Activated Carbon Made from Khat (Catha edulis) and Neem (Azadirachta indica) Leaves. Environ. Dev. Sustain. 2020, 22, 2967–2978. DOI: 10.1007/s10668-019-00330-7.
  • Ba-Abbad, M. M.; Benamour, A.; Ewis, D.; Mohammad, A. W.; Mahmoudi, E. Synthesis of Fe3O4 Nanoparticles with Different Shapes through a Co-Precipitation Method and Their Application. JOM 2022, 74, 3531–3539. DOI: 10.1007/s11837-022-05380-3.
  • Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, Rev 2018, 2, 1–17. DOI: 10.1002/smtd.201800173.
  • Maranata, G. J.; Surya, N. O.; Hasanah, A. N. Optimising Factors Affecting Solid Phase Extraction Performances of Molecular Imprinted Polymer as Recent Sample Preparation Technique. Heliyon 2021, 7, e05934. DOI: 10.1016/j.heliyon.2021.e05934.
  • Sanagi, M. M.; Salleh, S.; Ibrahim, W. A. W.; Naim, A. A.; Hermawan, D.; Miskam, M.; Hussain, I.; Aboul-Enein, H. Y. Molecularly Imprinted Polymer Solid-Phase Extraction for the Analysis of Organophosphorus Pesticides in Fruit Samples. J. Food Compos. Anal. 2013, 32, 155–161. DOI: 10.1016/j.jfca.2013.09.001.
  • Pezhhanfar, S.; Ali, M.; Abolfazl, S.; Yazdi, H.; Reza, M.; Mogaddam, A. An All‑Embracing Analytical Method Comprising Modified QuEChERS‑Dispersive Micro‑Solid‑Phase Extraction–Dispersive Liquid–Liquid Microextraction Using FeGA MOF for the Extraction and Preconcentration of Pesticides Simultaneously from Juice and Flesh of Watermelon. Anal. Sci. 2023, 39, 1201–1214. DOI: 10.1007/s44211-023-00330-8.
  • Kalra, A.; Tugcu, N.; Cramer, S. M.; Garde, S. Salting-in and Salting-out of Hydrophobic Solutes in Aqueous Salt Solutions. J. Phys. Chem. B 2001, 105, 6380–6386. DOI: 10.1021/jp010568+.
  • Silica gel cleanup. Method 3630c. 1996, 3, 1–15.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TrAC - Trends Anal. Chem. 2019, 118, 793–809. DOI: 10.1016/j.trac.2019.07.012.
  • Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides. J. Agric. Food Chem. 2016, 64, 2145–2152. DOI: 10.1021/acs.jafc.5b05437.
  • Li, N.; Zhang, L.; Nian, L.; Cao, B.; Wang, Z.; Lei, L.; Yang, X.; Sui, J.; Zhang, H.; Yu, A. Dispersive Micro-Solid-Phase Extraction of Herbicides in Vegetable Oil with Metal-Organic Framework MIL-101. J. Agric. Food Chem. 2015, 63, 2154–2161. DOI: 10.1021/jf505760y.
  • Kaur, R.; Kaur, R.; Rani, S.; Malik, A. K.; Kabir, A.; Furton, K. G.; Samanidou, V. F. Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry. Molecules 2019, 24, 1013. DOI: 10.3390/molecules24061013.
  • Zhou, W.; Yang, S.; Wang, P. G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. DOI: 10.4155/bio-2017-0214.
  • Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion Suppression; a Critical Review on Causes, Evaluation, Prevention and Applications. Talanta 2013, 115, 104–122. DOI: 10.1016/j.talanta.2013.03.048.
  • Sun, T.; Sun, H.; Zhao, F. Dispersive Solid-Phase Extraction for the Determination of Trace Organochlorine Pesticides in Apple Juices Using Reduced Graphene Oxide Coated with ZnO Nanocomposites as Sorbent. J. Sep. Sci. 2017, 40, 3725–3733. DOI: 10.1002/jssc.201700599.
  • Ramos, R.; Carvalho, R.; Dela, M.; Rodriguez, V.; Franco, E.; S.; Beltrame, F.; Pereira, A. L.; Santos, V. S.; Araujo, W.; Rocha, B. A. DLLME-SFO-GC-MS Procedure for the Determination of 10 Organochlorine Pesticides in Water and Remediation Using Magnetite Nanoparticles. Environ. Sci. Pollut. Res. Int. 2020, 27, 45336–45348. DOI: 10.1007/s11356-020-10285-2.
  • Ye, X.; Shao, H.; Zhou, T.; Xu, J.; Cao, X.; Mo, W. Analysis of Organochlorine Pesticides in Tomatoes Using a Modified QuEChERS Method Based on N-Doped Graphitized Carbon Coupled with GC-MS/MS. Food Anal. Methods 2020, 13, 823–832. DOI: 10.1007/s12161-019-01674-6.
  • Cortada, C.; Vidal, L.; Pastor, R.; Santiago, N.; Canals, A. Determination of Organochlorine Pesticides in Water Samples by Dispersive Liquid – Liquid Microextraction Coupled to Gas Chromatography – Mass Spectrometry. Anal. Chim. Acta. 2009, 649, 218–221. DOI: 10.1016/j.aca.2009.07.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.