Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 6
282
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of imidacloprid on the survival and biomarker responses of Eristalis tenax larvae (Diptera: Syrphidae): a comparative study between indoor and outdoor exposures

ORCID Icon, & ORCID Icon
Pages 333-340 | Received 19 Jun 2023, Accepted 27 Feb 2024, Published online: 25 Apr 2024

References

  • Pisa, L. W.; Amaral-Rogers, V.; Belzunces, L. P.; Bonmatin, J. M.; Downs, C.; Goulson, D.; Kreutzweiser, D. P.; Krupke, C.; Liess, M.; Mcfield, M.; et al. Effects of Neonicotinoids and Fipronil on Non-Target Invertebrates. Environ. Sci. Pollut. Res. Int. 2015, 22, 68–102. DOI: 10.1007/s11356-014-3471-x.
  • Easton, A. H.; Goulson, D. The Neonicotinoid Insecticide Imidacloprid Repels Pollinating Flies and Beetles at Field-Realistic Concentrations. PLoS ONE. 2013, 8, e54819. DOI: 10.1371/journal.pone.0054819.
  • Tomizawa, M.; Casida, J. E. Neonicotinoid Insecticide Toxicology: Mechanisms of Selective Action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. DOI: 10.1146/annurev.pharmtox.45.120403.095930.
  • Botha, C. J.; Du Plessis, E. C.; Coetser, H.; Rosemann, M. Analytical Confirmation of Imidacloprid Poisoning in Granivorous Cape Spurfowl (Pternistis capensis). J. S Afr. Vet. Assoc. 2018, 89, e1–e5. DOI: 10.4102/jsava.v89i0.1637.
  • Morrissey, C. A.; Mineau, P.; Devries, J. H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M. C.; Liber, K. Neonicotinoid Contamination of Global Surface Waters and Associated Risk to Aquatic Invertebrates: A Review. Environ. Int. 2015, 74, 291–303. DOI: 10.1016/j.envint.2014.10.024.
  • Dabrowski, J. M. Investigation of the Contamination of Water Resources by Agricultural Chemicals and the Impact on Environmental Health. Volume 2: Prioritising Human Health Effects and Mapping Sources of Agricultural Pesticides Used in South Africa. WRC Report No. TT 642/15. Pretoria, South Africa: Water Research Commission, 2015.
  • Elbert, A.; Nauen, R.; Leicht, W. Imidacloprid, a Novel Chloronicotinyl Insecticide: Biological Activity and Agricultural Importance. In Insecticides with Novel Modes of Action: Mechanism and Application; Ishaaya, I.; Degheele, D., Eds.; Berlin Heidelberg: Springer Verlag, 1998, 50–74
  • Samson-Robert, O.; Labrie, G.; Chagnon, M.; Fournier, V. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. PLoS ONE. 2014, 9, e108443. DOI: 10.1371/journal.pone.0108443.
  • Anderson, J. C.; Dubetz, C.; Palace, V. P. Neonicotinoids in the Canadian Aquatic Environment: A Literature Review on Current Use Products with a Focus on Fate, Exposure, and Biological Effects. Sci. Total Environ. 2015, 505, 409–422. DOI: 10.1016/j.scitotenv.2014.09.090.
  • Schaafsma, A.; Limay-Rios, V.; Baute, T.; Smith, J.; Xue, Y. Neonicotinoid Insecticide Residues in Surface Water and Soil Associated with Commercial Maize (Corn) Fields in Southwestern Ontario. PLoS ONE. 2015, 10, e0118139. DOI: 10.1371/journal.pone.0118139.
  • CCME. Canadian Water Quality Guidelines: Imidacloprid. scientific Supporting Document. Winnipeg: Canadian Council of Ministers of the Environment, 2007.
  • Van Dijk, T. C.; Van Staalduinen, M. A.; Van der Sluijs, J. P. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid. PLoS ONE. 2013, 8, e62374. DOI: 10.1371/journal.pone.0062374.
  • Henry, M.; Béguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science 2012, 336, 348–350. DOI: 10.1126/science.1215039.
  • Macaulay, S. J.; Buchwalter, D. B.; Matthaei, C. D. Water Temperature Interacts with the Insecticide Imidacloprid to Alter Acute Lethal and Sublethal Toxicity to Mayfly Larvae. New Zeal. J. Mar. Fresh. Res. 2020, 54, 115–130.
  • Kamdem, M. M.; Voua Otomo, P. Developmental Performance of Eristalis tenax Larvae (Diptera: Syrphidae): Influence of Growth Media and Yeast Addition during Captive Rearing. JEZ-A: Ecol. Integrative Physiol. 2023, 339, 1–11.
  • Basley, K.; Davenport, B.; Vogiatzis, K.; Goulson, D. Effects of Chronic Exposure to Thiamethoxam on Larvae of the Hoverfly Eristalis tenax (Diptera, Syrphidae). PeerJ 2018, 6, e4258. DOI: 10.7717/peerj.4258.
  • Rotheray, G. E.; Gilbert, F. S. The Natural History of Hoverflies. Forrest Text, Tresaith, Wales, 2011.
  • Sánchez-Bayo, F.; Goka, K.; Hayasaka, D. Contamination of the Aquatic Environment with Neonicotinoids and Its Implication for Ecosystems. Front. Environ. Sci. 2016, 4, 1–14. DOI: 10.3389/fenvs.2016.00071.
  • Rigosi, E.; O’Carroll, D. C. The Cholinergic Pesticide Imidacloprid Impairs Contrast and Direction Sensitivity in Motion Detecting Neurons of an Insect Pollinator. bioRxiv 2018, 295576.
  • van der Oost, R.; Beyer, J.; Vermeulen, N. P. E. Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. DOI: 10.1016/s1382-6689(02)00126-6.
  • Freeman, B.; Crapo, J. Biology of Disease. Free Radicals and Tissue Injury. Lab. Invest. 1982, 47, 412–426.
  • Sithole, S.; Nyoka, N. N.-K.; Kamdem, M. M.; Voua Otomo, P. Dietary Deprivation Reduces the Deleterious Effects of Carbaryl on the Survival and Activity of Both Catalase and Acetylcholinesterase in Earthworms. Ecotoxicol. Environ. Saf. 2023, 263, 115293. DOI: 10.1016/j.ecoenv.2023.115293.
  • Downs, C. A.; Dillon, J. R. T.; Fauth, J. E.; Woodley, C. M. A Molecular Biomarker System for Assessing the Health of Gastropods (Ilyanassa obsoleta) Exposed to Natural and Anthropogenic Stressors. J. Exp. Mar. Biol. Ecol. 2001, 259, 189–214. DOI: 10.1016/s0022-0981(01)00233-7.
  • Khalil, A. M. Toxicological Effects and Oxidative Stress Responses in Freshwater Snail, Lanistes carinatus, following Exposure to Chlorpyrifos. Ecotoxicol. Environ. Saf. 2015, 116, 137–142. DOI: 10.1016/j.ecoenv.2015.03.010.
  • Felton, G. W.; Summers, C. B. Antioxidant Systems in Insects. Arch. Insect Biochem. Physiol. 1995, 29, 187–197. DOI: 10.1002/arch.940290208.
  • Smallman, B. N.; Mansingh, A. The Cholinergic System in Insect Development. Annu. Rev. Entomol. 1969, 14, 387–408. DOI: 10.1146/annurev.en.14.010169.002131.
  • Rodrigues, A. C. M.; Gravato, C.; Quintaneiro, C.; Golovko, O.; Žlábek, V.; Barata, C.; Soares, A. M. V. M.; Pestana, J. L. T. Life History and Biochemical Effects of Chlorantraniliprole on Chironomus riparius. Sci. Total Environ. 2015, 508, 506–513. DOI: 10.1016/j.scitotenv.2014.12.021.
  • Tennekes, H. A.; Sánchez-Bayo, F. Time-Dependent Toxicity of Neonicotinoids and Other Toxicants: Implications for a New Approach to Risk Assessment. J. Environ. Anal. Toxicol 2011, S4, 1.
  • Cohen, G.; Dembiec, D.; Marcus, J. Measurement of Catalase Activity in Tissue Extracts. Anal. Biochem. 1970, 34, 30–38. DOI: 10.1016/0003-2697(70)90083-7.
  • Ellman, G. L.; Courtney, K. D.; Andres, V.; Feather-Stone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. DOI: 10.1016/0006-2952(61)90145-9.
  • Abbott, W. S. A Method of Computing the Effectiveness of an Insecticide. 1925. J. Am. Mosq. Control Assoc. 1987, 3, 302–303.
  • Raby, M.; Zhao, X.; Hao, C.; Poirier, D. G.; Sibley, P. K. Chronic Toxicity of 6 Neonicotinoid Insecticides to Chironomus dilutus and Neocloeon triangulifer. Environ. Toxicol. Chem. 2018, 37, 2727–2739. DOI: 10.1002/etc.4234.
  • Maloney, E. M.; Morrissey, C. A.; Headley, J. V.; Peru, K. M.; Liber, K. Can Chronic Exposure to Imidacloprid, Clothianidin, and Thiamethoxam Mixtures Exert Greater than Additive Toxicity in Chironomus dilutus? Ecotoxicol. Environ. Saf. 2018, 156, 354–365. DOI: 10.1016/j.ecoenv.2018.03.003.
  • Naveen, N. C.; Fojtova, D.; Blahova, L.; Rozmankova, E.; Blaha, L. Acute and (Sub)Chronic Toxicity of the Neonicotinoid Imidacloprid on Chironomus riparius. Chemosphere 2018, 209, 568–577. DOI: 10.1016/j.chemosphere.2018.06.102.
  • Cavallaro, M. C.; Morrissey, C. A.; Headley, J. V.; Peru, K. M.; Liber, K. Comparative Chronic Toxicity of Imidacloprid, Clothianidin, and Thiamethoxam to Chironomus dilutus and Estimation of Toxic Equivalency Factors. Environ. Toxicol. Chem. 2017, 36, 372–382. DOI: 10.1002/etc.3536.
  • Roessink, I.; Merga, L. B.; Zweers, H. J.; Van den Brink, P. J. The Neonicotinoid Imidacloprid Shows High Chronic Toxicity to Mayfly Nymphs. Environ. Toxicol. Chem. 2013, 32, 1096–1100. DOI: 10.1002/etc.2201.
  • Stoughton, S. J.; Liber, K.; Culp, J.; Cessna, A. Acute and Chronic Toxicity of Imidacloprid to the Aquatic Invertebrates Chironomus tentans and Hyalella azteca under Constant- and Pulse-Exposure Conditions. Arch. Environ. Contam. Toxicol. 2008, 54, 662–673. DOI: 10.1007/s00244-007-9073-6.
  • Mineau, P.; Palmer, C. Neonicotinoid Insecticides and Birds: The Impact of the Nation’s Most Widely Used Insecticides on Birds. American Bird Conservancy, Virginia, USA, 2013.
  • Gerber, R.; Smit, N. J.; van Vuren, J. H. J.; Ikenaka, Y.; Wepener, V. Biomarkers in Tigerfish (Hydrocynus vittatus) as Indicators of Metal and Organic Pollution in Ecologically Sensitive Subtropical Rivers. Ecotoxicol. Environ. Saf. 2018, 157, 307–317. DOI: 10.1016/j.ecoenv.2018.03.091.
  • Azevedo-Pereira, H. M. V. S.; Lemos, M. F. L.; Soares, A. M. Effects of Imidacloprid Exposure on Chironomus riparius Meigen Larvae: Linking Acetylcholinesterase Activity to Behavior. Ecotoxicol. Environ. Saf. 2011, 74, 1210–1215. DOI: 10.1016/j.ecoenv.2011.03.018.
  • Connell, D.; Lam, P.; Richardson, B.; Wu, R. Introduction to Ecotoxicology. Oxford, United Kingdom: Blackwell Science Ltd; 1999.
  • Tomizawa, M.; Lee, D. L.; Casida, J. E. Neonicotinoid Insecticides: Molecular Features Conferring Selectivity for Insect versus Mammalian Nicotinic Receptors. J. Agric. Food Chem. 2000, 48, 6016–6024. DOI: 10.1021/jf000873c.
  • Kabeer, I. A. S.; Sailatha, D.; Rao, K. V. R. Impact of Malathion on Acetylcholinesterase in the Tissue of the Fish, Tilapia mossambica (Peters)—a Time Course Study. J. Biosci. 1980, 2, 37–41. DOI: 10.1007/BF02703131.
  • Adams, S. M.; Greeley, M. S. Ecotoxicological Indicators of Water Quality: Using Multi-Response Indicators to Assess the Health of Aquatic Ecosystems. Water Air Soil Pollut. 2000, 123, 103–115. DOI: 10.1023/A:1005217622959.
  • Kamdem, M. M.; Kubheka, N.; Nyoka, N.-K. Using Folsomia candida (Collembola) for the Ecological Assessment of Sediment Samples from Three Rivers, South Africa. International Journal of Energy and Water Resources 2024, 8, 1–11. https://doi.org/10.1007/s42108-024-00282-3.
  • Kamdem, M. M.; Ramoejane, M.; Voua Otomo, P. Local-Scale DNA Barcoding of Afrotropical Hoverflies (Diptera: Syrphidae): a Case Study of the Eastern Free State of South Africa. Insects 2023, 14, 692. DOI: 10.3390/insects14080692.
  • Kehinde, T.; Samways, M. J. Effects of Vineyard Management on Biotic Homogenization of Insect–Flower Interaction Networks in the Cape Floristic Region Biodiversity Hotspot. J. Insect Conserv. 2014, 18, 469–477. DOI: 10.1007/s10841-014-9659-z.