171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Magnetic Schrödinger operators and landscape functions

, ORCID Icon & ORCID Icon
Pages 1-14 | Received 15 Oct 2022, Accepted 04 Dec 2023, Published online: 23 Dec 2023

References

  • Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Phys. Rev. 109:1492–1505. DOI: 10.1103/PhysRev.109.1492.
  • Felix, S., Asch, M., Filoche, M., Sapoval, B. (2007). Localization and increased damping in irregular acoustic cavities. J. Sci. Vib. 299:965–976. DOI: 10.1016/j.jsv.2006.07.036.
  • Jones, P. W., Steinerberger, S. (2019). Localization of Neumann eigenfunctions near irregular boundaries. Nonlinearity 32:768–776. DOI: 10.1088/1361-6544/aafa89.
  • Sapoval, B., Felix, S., Filoche, M. (2008). Localisation and damping in resonators with complex geometry. Eur. Phys. J. Spec. Top. 161:225–232. DOI: 10.1140/epjst/e2008-00763-2.
  • Filoche, M., Mayboroda, S. (2012). Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA 109(37):14761–14766. DOI: 10.1073/pnas.1120432109.
  • Arnold, D., David, G., Jerison, D., Mayboroda, S., Filoche, M. (2016). Effective confining potential of quantum states in disordered media. Phys. Rev. Lett. 116(5):056602. DOI: 10.1103/PhysRevLett.116.056602.
  • Arnold, D., David, G., Filoche, M., Jerison, D., Mayboroda, S. Localization of eigenfunctions via an effective potential. Commun. Partial Differ. Equ. (to appear).
  • Arnold, D., David, G., Filoche, M., Jerison, D., Mayboroda, S. (2019). Computing spectra without solving eigenvalue problems. SIAM J. Sci. Comput. 41(1):B69–B92. DOI: 10.1137/17M1156721.
  • Altmann, R., Henning, P., Peterseim, D. Quantitative Anderson localization of Schrodinger eigenstates under disorder potentials, arXiv:arXiv:1803.09950, to appear in M3AS.
  • Altmann, R., Peterseim, D. (2019). Localized computation of eigenstates of random Schrödinger operators. SIAM J. Sci. Comput. 41(6):B1211–B1227. DOI: 10.1137/19M1252594.
  • Chalopin, Y., Piazza, F., Mayboroda, S., Weisbuch, C., Filoche, M. (2019). Universality of fold-encoded localized vibrations in enzymes. Sci. Rep. 9:12835. DOI: 10.1038/s41598-019-48905-8.
  • David, G., Filoche, M., Mayboroda, S. The landscape law for the integrated density of states, ArXiv:1909.10558.
  • Filoche, M., Mayboroda, S. (2013). The landscape of Anderson localization in a disordered medium. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, Contemporary Mathematics, 601. Providence, RI: American Mathematical Society, pp. 113–121.
  • Filoche, M., Piccardo, M., Wu, Y.-R., Li, C.-K., Weisbuch, C., Mayboroda, S. (2017). Localization landscape theory of disorder in semiconductors I: Theory and modeling. Phys. Rev. B 95:144204. DOI: 10.1103/PhysRevB.95.144204.
  • Harrell, E., Maltsev, A. (2018). On Agmon metrics and exponential localization for quantum graphs. Comm. Math. Phys. 359(2):429–448. DOI: 10.1007/s00220-018-3124-x.
  • Kornhuber, R., Yserentant, H. (2016). Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3):1017–1036. DOI: 10.1137/15M1028510.
  • Lefebvre, G., Gondel, A., Dubois, M., Atlan, M., Feppon, F., Labbe, A., Gillot, C., Garelli, A. A., Ernoult, M., Filoche, M., Sebbah, P. (2016). One single static measurement predicts wave localization in complex structures. Phys. Rev. Lett. 117:074301. DOI: 10.1103/PhysRevLett.117.074301.
  • Leite Lyra, M., Mayboroda, S., Filoche, M. (2015). Dual landscapes in Anderson localization on discrete lattices. EPL Europhys. Lett. 109(4):47001. DOI: 10.1209/0295-5075/109/47001.
  • Lu, J., Steinerberger, S. (2018). Detecting localized eigenstates of linear operators. Res. Math. Sci. 5(34):1–14. DOI: 10.1007/s40687-018-0152-2.
  • Piccardo, M., Li, C.-K., Wu, Y.-R., Speck, J., Bonef, B., Farrell, R., Filoche, M., Martinelli, L., Peretti, J., and Weisbuch, C. (2017). Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers. Phys. Rev. B 95:144205. DOI: 10.1103/PhysRevB.95.144205.
  • Steinerberger, S. (2017). Localization of quantum states and landscape functions. Proc. Amer. Math. Soc. 145:2895–2907. DOI: 10.1090/proc/13343.
  • Steinerberger, S. (2021). Regularized potentials of Schrodinger operators and a local landscape function. Commun. Partial Differ. Equ. 46:1262–1279. DOI: 10.1080/03605302.2020.1871366.
  • Lu, J., Murphey, C., Steinerberger, S. (2022). Fast localization of eigenfunctions via smoothed potentials. J. Sci. Comput. 90:Article number: 38. DOI: 10.1007/s10915-021-01682-x.
  • Nenashev, A. V., Baranovskii, S. D., Meerholz, K., Gebhard, F. Quantum states in disordered media. I. Low-pass filter approach. Phys. Rev. B 107:064206.
  • Nenashev, A. V., Baranovskii, S. D., Meerholz, K., Gebhard, F. (2023). Quantum states in disordered media. II. Spatial charge carrier distribution. Phys. Rev. B 107:064207. DOI: 10.1103/PhysRevB.107.064207.
  • Broderix, K., Hundertmark, D., Leschke, H. (2000). Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12(2):181–225. DOI: 10.1142/S0129055X00000083.
  • Poggi, B. Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields, arXiv:2107.14103
  • Gillman, A., Barnett, A., Martinsson, P. G. (2015). A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media. BIT Numer. Math. 55:141–170. DOI: 10.1007/s10543-014-0499-8.
  • Fortunato, D., Hale, N., Townsend, A. (2021). The ultraspherical spectral element method. J. Comput. Phys. 436:110087. DOI: 10.1016/j.jcp.2020.110087.
  • Gillman, A., Martinsson, P. (2014). A direct solver with o(n) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method. SIAM J. Sci. Comput. 36(4):A2023–A2046. DOI: 10.1137/130918988.
  • Martinsson, P.-G. (2019). Fast Direct Solvers for Elliptic PDEs. Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Hamana, Y., Matsumoto, H. (2013). The probability distributions of the first hitting times of Bessel processes. Trans. Amer. Math. Soc. 365:5237–5257 DOI: 10.1090/S0002-9947-2013-05799-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.