190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phenotypic characterization and diversity estimates in sugarcane (Saccharum spp. hybrid) germplasm

, &
Pages 1-17 | Received 11 Oct 2023, Accepted 14 Apr 2024, Published online: 07 May 2024

References

  • Abdul QK, Kiya AT, Berhanu LR. 2017. A study on morphological characters of introduced sugarcane varieties (Saccharum spp. hybrid) in Ethiopia. Int J Plant Breed Genet. 11(1):1–12. doi: 10.3923/ijpbg.2017.1.12.
  • Augstburger F, Berger J, Censkowsky U, Heid P, Milz J, Streit C. 2001. Organic farming in the tropics and subtropics.Exemplary descriptions of 20 crops. Sugarcane. https://www.naturland.de/images/01_naturland/_en/Documents/Technical_Information/Cultivation_guidelines/sugarcane_CD_f.pdf
  • Ayele N, Tana T, Heerden PDRV, W/Tsadik K, Alemayehu Y, Merah O. 2021. Ripening response of sugarcane varieties to chemical ripeners and economic benefits during the early period of harvesting at Wonji-Shoa and Metahara sugarcane Plantations, Central Rift Valley of Ethiopia. Int J Agron. 2021:1–9. doi: 10.1155/2021/6645913.
  • Bakshi B, Hemaprabha G. 2022. Genetic divergence of sugar yield and its components in flowering type Saccharum officinarum clones. Agric Sci Digest. 25(2):118–120.
  • Berding ND, Hogarth M, Cox MC. 2004. Plant improvement of sugarcane. In: Glyn J., editor. Sugarcane. Oxford, U.K: Blackwell Science; p. 20–53.
  • Birru E. 2016. Sugarcane industry overview and energy efficieny considerations, literature survey document. KTH School of Industrial Engineering and Management, p. 4–61. SE–100 44 Stockholm.
  • Blume H. 1985. Smallholders. Geography of Sugar Cane. Berlin: Verlag Dr. Albert Bartens; p. 230–236.
  • Breaux RD. 1984. Breeding to enhance sucrose content of sugarcane varieties in Louisiana. Field Crops Res. 9:59–67. doi: 10.1016/0378-4290(84)90006-6.
  • Chen Z, Qin C, Wang M. 2019. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biol. 19:1–17. doi: 10.1186/s12870-019-1882-z.
  • Cock JH. 2001. Sugarcane growth and development. Int Sugar J. 105:5–15.
  • Cox MC, Hansen PB. 1995. Productivity trends in southern and central regions and the impact of new varieties. In Proceedings of the Australian Society of Sugar Cane Technologists 17; Bundaberg, Australia. p. 1–7.
  • Cursi DE, Hoffmann H, Barbosa GVS, Bressiani JA, Gazaffi R, Chapola RG, Fernandes Junior AR, Balsalobre TWA, Diniz CA, Santos JM, et al. 2022. History and current status of sugarcane breeding, germplasm development and molecular genetics in brazil. Sugar Tech. 24(1):112–133. doi: 10.1007/s12355-021-00951-1.
  • De Lacky IH, Cooper M. 1990. Pattern analysis for the analysis of regional variety trials. In: Kang M., editor. Genotype-by-environment interaction and plant breeding. Baton Rouge: Louisiana State University; p. 301–334.
  • Dengia A, Dechassa N, Wogi L, Amsalu B. 2023. Analysis of declining trends in sugarcane yield at Wonji-Shoa Sugar Estate, Central Ethiopia. Life Sci Biomed Exp Results. 4(e13):1–19. doi: 10.1017/exp.2023.13.
  • Ekpelikpeze OS, Dansi A, Agbangla C, Akoegninou A, Sanni A. 2016. Biochemical characterization of sugarcane varieties cultivated in Benin. Int J Curr Microbiol Appl Sci. 5(2):368–379. doi: 10.20546/ijcmas.2016.502.042.
  • Embassy of Federal Democratic Republic of Ethiopia. 2014. Investment opportunity in sugar cane plantation in Ethiopia. New Delhi, India. http://www.ethiopianembassy.org.in/investment/Opportunity%20in%20Sugar%20Cane%20Plantation%202014.pdf.
  • Ftwi M, Mekbib F, Abraha E. 2016. Multivariate analysis of sugar yield contributing traits in Sugarcane (Saccharum officinarum.L), in Ethiopia. Afr J Plant Sci. 10(8):145–156. doi: 10.5897/AJPS2016.1419.
  • Gan G, Ma C, Wu J. 2007. Data clustering theory, algorithms, and applications. ASA SIAM series on Statistics and Applied Probability, Philadelphia.
  • Govindaraj M, Vetriventhan M, Srinivasan M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int. 2015:1–14. doi: 10.1155/2015/431487.
  • GRIN, 2004. The Germplasm Resources Information Network (GRIN). http://www.ars-grin.gov.
  • Hartley HO. 1950. The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika. 37(3/4):308–312. doi: 10.1093/biomet/37.3-4.308.
  • Hasan M, Abdullah HM. 2015. Plant genetic resources and indigenous knowledge: an emerging needs for conservation. In: Salgotra R.K., and Gupta B.B., editors. Plant Genetic Resources and Traditional Knowledge for Food Security. Berlin/Heidelberg, Germany: Springer; p. 105–120.
  • Heaton EA, Frank GD, Stephen PL. 2008. Meeting US biofuel goals with less land: The Potential of Miscanthus. Global Change Biol. 14(9):2000–2014. doi: 10.1111/j.1365-2486.2008.01662.x.
  • Hoban S, Campbell CD, da Silva JM, Ekblom R, Funk WC, Garner BA, Godoy JA, Kershaw F, MacDonald AJ, Mergeay J. 2021. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on biological diversity: current actions and indicators are insufficient. Biol Conserv. 261:109233. doi: 10.1016/j.biocon.2021.109233.
  • Hogarth DM. 1976. New varieties lift sugar production. Producers Rev. 66(10):21–22.
  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N. 2008. Vellend M. Ecological consequences of genetic diversity. Ecol Lett. 11:609–623. doi: 10.1111/j.1461-0248.2008.01179.x.
  • Hundito K. 2010. Handbook of laboratory methods and chemical control for Ethiopian Sugar factories. Ethiopia: Ethiopian Sugar Development Agency Research Directorate.
  • Ittah MA, Obok EE. 2019. Breeding potential and multivariate analyses of morphological and yield traits in industrial sugarcane (Saccharum officinarum L.) accessions in a humid tropical agroecology. Int J Plant Soil Sci. 27(5):1–10. doi: 10.9734/IJPSS/2019/v27i530087.
  • Jackson PA. 2005a. Breeding for improved sugar content in sugarcane. Field Crops Res. 92(2–3):277–290. doi: 10.1016/j.fcr.2005.01.024.
  • Jackson PA. 2005b. Progress and prospects in genetic improvement in sucrose accumulation. Field Crops Res. 92(2–3):277–290. doi: 10.1016/j.fcr.2005.01.024.
  • Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 94(1):1–15. doi: 10.1186/1471-2156-11-94.
  • Kandel A, Yang X, Song J, Wang J. 2018. Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Front Plant Sci. 9(151):1–14. doi: 10.3389/fpls.2018.00151.
  • Karpagam E, Alarmelu S. 2017. Morphological characterization and genetic diversity analysis of interspecific hybrids of sugarcane. Ind J Gen Plnt Bree. 77(4):531–539. doi: 10.5958/0975-6906.2017.00070.0.
  • Kassambara A. 2017. Practical guide to principal component methods in R, multivariate analysis II. First ed. Sthda; p. 1–125. https://www.google.com/search?q=http%3A%3Awww.sthda.com&rlz=1C1GCEB_enIN1096IN1096&oq=http%3A%3Awww.sthda.com&gs_lcrp=EgZjaHJvbWUqBggAEEUYOzIGCAAQRRg70gEHNzgzajBqN6gCCLACAQ&sourceid=chrome&ie=UTF-8&safe=active.
  • Kebede S, Ambachew D, Firehun G. 2013. Trends of sugar industry development in Ethiopia: challenges and prospects. Ethiopian Science Academy; 2013 Apr; Adiss Ababa, Ethiopoia.
  • Lance GN, Williams WT. 1967. A general theory of classificatory sorting strategies II. Clustering Syst Comput J. 10(3):271–277. doi: 10.1093/comjnl/10.3.271.
  • Meade GP, Chen JCP. 1977. Cane Sugar Handbook. New York: John Wiley and Sons.
  • Menéndez CM, Roca VM, Arencibia A, González R. 2019. Assessment of genetic diversity in sugarcane (Saccharum spp.) germplasm using cluster and principal component analysis. Sugarcane Int. 37(1):1–12. doi: 10.18814/SCIENTI.V37I1.1.
  • Mondini L, Noorani A, Pagnotta MA. 2009. Assessing plant genetic diversity by molecular tools. Diversity. 1:19–35. doi: 10.3390/d1010019.
  • Plucknett DL, Smith NJH. 1986. Sustaining agricultural yields. BioScience. 36(1):40–45. doi: 10.2307/1309796.
  • Racedo J, Gutiérrez L, Francisca Perera M, Ostengo S, Mariano Pardo E, Inés Cuenya M, Welin B, Pedro Castagnaro A. 2016. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol. 6(142):1–16. doi: 10.1186/s12870-016-0829-x.
  • Raffard A, Santoul F, Cucherousset J, Blanchet S. 2019. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev. 94:648–661. doi: 10.1111/brv.12472.
  • Rezene F. (2009). The status of biofuels in Ethiopia: opportunities and challenges. In IUCN Regional Workshop on Bio-fuel Production and Invasive Species; 2009 Apr 20–22; Nairobi, Kenya.
  • RStudio Core Team, Boston, RStudio, 2023. Integrated development for R. RStudio, 2023. PBC, MA. http://www.rstudio.com/.
  • Salgotra RK, Chauhan BS. 2023. Genetic diversity, conservation, and utilization of plant genetic resources. Genes. 14(174):1–20. doi: 10.3390/genes14010174.
  • Sally S, Eltson A. 2021. Characterization of sugarcane germplasm collection. Afr J Agric Res. 17(2):273–282. doi: 10.5897/AJAR2020.14799.
  • Seema Y, Phillip J, Wei XM, Elizabeth MR, Karen A, Emily D, Felicity A, Ben JH, Kai PV. 2020. Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy. 585(7):1–21. doi: 10.3390/plants11162139.
  • Semie TK, Thapat S, Shabbir HG. 2019. The impact of sugarcane production on biodiversity related to land use change in Ethiopia. Global Ecol Conserv. 18(2019):1–10. doi: 10.1016/j.gecco.2019.e00650.
  • Simmonds NW. 1979. Principles of crop improvement. London: Longman Group Limited.
  • Sumbele SA, Fonkeng E, Akongte P, Ndille NC, Henry A. 2021. Characterization of sugarcane germplasm collection and its potential utilization for evaluation of quantitative traits. Afr J Agric Res. 17(2):273–282. doi: 10.5897/AJAR2020.14799.
  • Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 16(2):1–14. doi: 10.1002/csc2.20377.
  • Tai PYP, Miller JD. 2001. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci. 41(3):879–885. doi: 10.2135/cropsci2001.413879x.
  • Tazeb A, Haileselassie T, Tesfaye K. 2017. Molecular characterization of introduced sugarcane genotypes in Ethiopia using inters simple sequence repeat (ISSR) molecular markers. Afr J Biotechnol. 16(10):434–449. doi: 10.5897/AJB2016.
  • Tena E, Mekbib F, Ayana A. 2014. Analysis of genetic diversity and population structure among exotic sugarcane (Saccharum Spp.) cultivars in Ethiopia using simple sequence repeat molecular markers. Afr J Biotechnol. doi: 10.1058/AJB2014.13849.
  • Tena E, Mekbib F, Ayana A. 2016a. Correlation and path coefficient analyses in sugarcane genotypes of Ethiopia. Am J Plant Sci. 7(10):1490–1497. 710141. doi: 10.4236/ajps.2016.710141.
  • Tena E, Mekbib F, Ayana A. 2016b. Genetic diversity of quantitative traits of sugarcane genotypes in Ethiopia. Am J Plant Sci. 7:1498–1520. doi: 10.4236/ajps.2016.710142.
  • Tena E, Mekbib F, Ayana A. 2016c. Heritability and correlation among sugarcane (Saccharum spp.) yield and some agronomic and sugar quality traits in Ethiopia. AJPS. 7(10):1453–1477. doi: 10.4236/ajps.2016.710139.
  • Tena E, Mekbib F, Ayana A. 2018. Sugarcane landraces of Ethiopia: Germplasm collection and analysis of regional diversity and distribution. Adv Agric. 2018:1–18. doi: 10.1155/2018/7920724.
  • Tesfaye W. 2021. Long term sugarcane cultivation effect on selected physical and hydraulic properties of soils at three Ethiopian Sugarcane Estates. Adv Crop Sci Technol. 9(8):1–7. ajpb. 20210603.14. doi:10.1164/8j.
  • Tolera B, Gedebo A, Tena E. 2023a. Genetic diversity of sugarcane (Saccharum spp.) genotypes based on agro-morphological and biochemical traits. Cogent Food & Agriculture. 9(1):1–27. doi: 10.1080/23311932.2023.2254141.
  • Tolera B, Gedebo A, Tena E. 2023b. Variability, heritability and genetic advance in sugarcane (Saccharum spp. hybrid) genotypes. Cogent Food & Agriculture. 9(1):1–16. doi: 10.1080/23311932.2023.2194482.
  • USDA (2023). Sugar: world markets and trade. United States Department of Agriculture Foreign Agricultural Service [accessed 2024 Apr 5]. https://gain.fas.usda.gov/Pages/Default.aspx.
  • Verma I, Roopendra K, Sharma A, Chandra A, Kamal A. 2019. Expression analysis of genes associated with sucrose accumulation and its effect on source–sink relationship in high sucrose accumulating early maturing sugarcane variety. Physiol Mol Biol Plants. 25(1):207–220. doi: 10.1007/s12298-018-0627-z.
  • Waclawovsky AJ, Sato PMS, Lembke CG, Moore PH, Souza GM. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal. 8(3):263–276. doi: 10.1111/j.1467-7652.2009.00491.x.
  • Wang J, Nayak S, Koch K, Ming R. 2013. Carbon partitioning in sugarcane (Saccharum species). Front Plant Sci Section Plant Biotechnol. 4:1–18. doi: 10.3389/fpls.2013.00201.
  • Welch BL. 1947. The generalization of Student’s problem when several different population variances are involved. Biometrika. 34(1–2):28–35. doi: 10.1093/biomet/34.1-2.28.
  • Yang L, Li L, Xu C, Li J, Li X. 2018. Genetic diversity analysis of sugarcane germplasm using cluster and principal component analysis. J Genet. 97(1):189–196.
  • Yang X, Luo Z, Todd J, Sood S, Wang J. 2020. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). Plant Genome. 13(1):1–16. doi: 10.1002/tpg2.20006.