62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood dynamics on the upper Letaba River, South Africa, deduced from luminescence dating

ORCID Icon &
Received 24 Jul 2023, Accepted 05 Mar 2024, Published online: 24 Mar 2024

References

  • Heritage, G. L., Moon, B. P., & Large, A. R. G. (2001a). The February 2000 floods on the Sabie River, South Africa: an examination of the magnitude and frequency. Koedoe, 44(1), 37–44. https://doi.org/10.4102/koedoe.v44i1.184.
  • Heritage, G. L., Moon, B. P., & Large, A. R. G. (2001b). The February 2000 floods on the Letaba River, South Africa: an examination of magnitude and frequency. Koedoe, 44(2), 1–6. https://doi.org/10.4102/koedoe.v44i2.171.
  • Aitken, M. J. (1985). Thermoluminescence Dating. London: Academic Press.
  • Aitken, M. J. (1997). Luminescence dating. In R. E. Taylor & M. J. Aitken (Eds.), Chronometric Dating in Archaeology (pp. 183–216). Berlin: Springer.
  • Aitken, M. J. (2014). Science-Based Dating in Archaeology. London: Routledge.
  • Baggs Sargood, M., Cohen, T. J., Thompson, C. J., & Croke, J. (2015). Hitting rock bottom: Morphological responses of bedrock-confined streams to a catastrophic flood. Earth Surface Dynamics, 3(2), 265–279. https://doi.org/10.5194/esurf-3-265-2015
  • Baynes, E. R. C., Lague, D., Steer, P., Bonnet, S., & Illien, L. (2020). Sediment flux‐driven channel geometry adjustment of bedrock and mixed gravel–bedrock rivers. Earth Surface Processes and Landforms, 45(14), 3714–3731. https://doi.org/10.1002/esp.4996
  • Blott, S. J., & Pye, K. (2001). GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237–1248. https://doi.org/10.1002/esp.261
  • Brierley, G., Fryirs, K., Cook, N., Outhet, D., Raine, A., Parsons, L., & Healey, M. (2011). Geomorphology in action: Linking policy with on-the-ground actions through applications of the river styles framework. Applied Geography, 31(3), 1132–1143. https://doi.org/10.1016/j.apgeog.2011.03.002
  • Broadhurst, L. J., & Heritage, G. L. (1998). Modelling stage-discharge relationships in anastomosing bedrock-influenced sections of the Sabie River system. Earth Surface Processes and Landforms, 23(5), 435–465. https://doi.org/10.1002/(SICI)1096-9837(199805)23:5<455:AID-ESP860>3.0.CO;2-2
  • Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers NS, 4(4), 463–484. https://doi.org/10.2307/622210
  • Buraas, E. M., Renshaw, C. E., Magilligan, F. J., & Dade, W. B. (2014). Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms, 39(13), 1778–1789. https://doi.org/10.1002/esp.3562
  • Burow, C., Kreutzer, S., Dietze, M., Fuchs, M. C., Fischer, M., Schmidt, C., & Brückner, H. (2016). RLumShiny – a graphical user interface for the R package ‘luminescence’. Ancient TL, 34(2), 22–32.
  • Colarossi, D., Duller, G. A. T., Roberts, H. M., Tooth, S., & Lyons, R. (2015). Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quaternary Geochronology, 30, 233–238. https://doi.org/10.1016/j.quageo.2015.02.015
  • Cunningham, A. C., Evans, M., & Knight, J. (2015). Quantifying bleaching for zero-age fluvial sediment: A Bayesian approach. Radiation Measurements, 81, 55–61. https://doi.org/10.1016/j.radmeas.2015.04.007
  • Dietze, M., Kreutzer, S., Burow, C., Fuchs, M. C., Fischer, M., & Schmidt, C. (2016). The abanico plot: Visualising chronometric data with individual standard errors. Quaternary Geochronology, 31, 12–18. https://doi.org/10.1016/j.quageo.2015.09.003
  • Downs, P. W., & Gregory, K. J. (1995). Approaches to river channel sensitivity. The Professional Geographer, 47(2), 168–175. https://doi.org/10.1111/j.0033-0124.1995.168_v.x
  • Eze, P. N., & Knight, J. (2018). A geomorphological characterisation of river systems in South Africa: A case study of the sabie river. Physics and Chemistry of the Earth, 105, 196–205. https://doi.org/10.1016/j.pce.2018.01.001
  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  • Fryirs, K. (2013). (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38(1), 30–46. https://doi.org/10.1002/esp.3242
  • Fryirs, K. A., & Brierley, G. J. (2018). What’s in a name? A naming convention for geomorphic river types using the river styles framework. PLoS One, 13(9), e0201909. https://doi.org/10.1371/journal.pone.0201909
  • Fryirs, K., Brierley, G. J., & Erskine, W. D. (2012). Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surface Processes and Landforms, 37(7), 763–773. https://doi.org/10.1002/esp.3210
  • Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 49–67. https://doi.org/10.1016/j.catena.2006.07.007
  • Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., & Olley, J. M. (1999). Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry, 41(2), 339–364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x
  • Graham, L. P., Andersson, L., Warburton Toucher, M., Wikner, J. J., & Wilk, J. (2022). Seasonal local rainfall and hydrological forecasting for Limpopo communities – a pragmatic approach. Climate Services, 27, 100308. https://doi.org/10.1016/j.cliser.2022.100308
  • Gray, H. J., & Mahan, S. A. (2015). Variables and potential models for the bleaching of luminescence signals in fluvial environments. Quaternary International, 362, 42–49. https://doi.org/10.1016/j.quaint.2014.11.007
  • Grenfell, S. E., Grenfell, M. C., Rowntree, K. M., & Ellery, W. N. (2014). Fluvial connectivity and climate: A comparison of channel pattern and process in two climatically contrasting fluvial sedimentary systems in South Africa. Geomorphology, 205, 142–154. https://doi.org/10.1016/j.geomorph.2012.05.010
  • Guérin, G., Mercier, N., & Adamiec, G. (2011). Dose-rate conversion factors: Update. Ancient TL, 29(1), 5–8.
  • Guo, Y., Ge, Y., Mao, P., & Liu, T. (2023). A comprehensive analysis of holocene extraordinary flood events in the Langxian gorge of the Yarlung Tsangpo River valley. Science of the Total Environment, 863, 160942. https://doi.org/10.1016/j.scitotenv.2022.160942
  • Heitmuller, F. T., Hudson, P. F., & Asquith, W. H. (2015). Lithologic and hydrologic controls of mixed alluvial–bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA. Geomorphology, 232, 1–19. https://doi.org/10.1016/j.geomorph.2014.12.033
  • Heritage, G., Entwistle, N., Milan, D., & Tooth, S. (2019). Quantifying and contextualising cyclone-driven, extreme flood magnitudes in bedrock-influenced dryland rivers. Advances in Water Resources, 123, 145–159. https://doi.org/10.1016/j.advwatres.2018.11.006
  • Heritage, G. L., Large, A. R. G., Moon, B. P., & Birkhead, A. L. (2003). Estimating extreme flood magnitude in bedrock-influenced channels using representative reach-based channel resistance data. Geografiska Annaler, 85A(1), 1–11. https://doi.org/10.1111/1468-0459.00184
  • Heritage, G., Tooth, S., Entwistle, N., & Milan, D. (2014). Long-term flood controls on semi-arid river form: Evidence from the Sabie and Olifants rivers, eastern South Africa. IAHS Publication, 367, 141–146. https://doi.org/10.5194/piahs-367-141-2015
  • Jain, M., Murray, A. S., & Bøtter-Jensen, L. (2004). Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments? Quaternaire, 15(1–2), 143–157. https://doi.org/10.3406/quate.2004.1762
  • Jansen, J. D., & Brierley, G. J. (2004). Pool-fills: A window to palaeoflood history and response in bedrock-confined rivers. Sedimentology, 51(5), 901–925. https://doi.org/10.1111/j.1365-3091.2004.00643.x
  • Johnson, K. N., & Finnegan, N. J. (2015). A lithologic control on active meandering in bedrock channels. GSA Bulletin, 127(11–12), 1766–1776. https://doi.org/10.1130/B31184.1
  • Keen-Zebert, A., Tooth, S., Rodnight, H., Duller, G. A. T., Roberts, H. M., & Grenfell, M. (2013). Late Quaternary floodplain reworking and the preservation of alluvial sedimentary archives in unconfined and confined river valleys in the eastern interior of South Africa. Geomorphology, 185, 54–66. https://doi.org/10.1016/j.geomorph.2012.12.004
  • Knight, J. (2022). Geomorphology and landscapes of the Limpopo River system. In F. Eckardt (Ed.), Landforms and Landscapes of Botswana (pp. 287–298). Cham: Springer. https://doi.org/10.1007/978-3-030-86102-5_16
  • Knight, J., & Evans, M. (2017). The sediment stratigraphy of a flood event: An example from the Sabie river, South Africa. Catena, 151, 87–97. https://doi.org/10.1016/j.catena.2016.12.015
  • Knight, J., & Evans, M. (2018). Luminescence dating, sediment analyses, and flood dynamics on the Sabie River, South Africa. Geomorphology, 319, 1–14. https://doi.org/10.1016/j.geomorph.2018.07.011
  • Knight, J., & Evans, M. (2022). Characterising the dynamics of river systems: An example of the Sabie River, South Africa. Koedoe, 64(1), a1700. https://doi.org/10.4102/koedoe.v64i1.1700
  • Knight, J., & Grab, S. W. (2018). Drainage network morphometry and evolution in highland eastern Lesotho, southern Africa. Quaternary International, 470, 4–17. https://doi.org/10.1016/j.quaint.2017.07.024
  • Larkin, Z. T., Tooth, S., Ralph, T. J., Duller, G. A. T., McCarthy, T., Keen-Zebert, A., & Humphries, M. S. (2017). Timescales, mechanisms, and controls of incisional avulsions in floodplain wetlands: Insights from the Tshwane River, semiarid South Africa. Geomorphology, 283, 158–172. https://doi.org/10.1016/j.geomorph.2017.01.021
  • Li, K., Qin, J., Chen, J., Shen, J., & Li, S.-H. (2021). Multi-method luminescence dating of old fluvial sediments from northern Tian Shan, China. Geochronometria, 48(1), 339–350. https://doi.org/10.2478/geochr-2020-0014
  • Mahan, S. A., Rittenour, T. M., Nelson, M. S., Ataee, N., Brown, N., DeWitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G. I., Neudorf, C. … Thomsen, K. (2023). Guide for interpreting and reporting luminescence dating results. GSA Bulletin, 135(5–6), 1480–1502. https://doi.org/10.1130/B36404.1
  • Maswanganye, S. E., Dube, T., Mazvimavi, D., & Jovanovic, N. (2022). Remotely sensed applications in monitoring the spatio-temporal dynamics of pools and flows along non-perennial rivers: A review. South African Geographical Journal, 104(4), 427–445. https://doi.org/10.1080/03736245.2021.1967774
  • Milan, D., Heritage, G., Entwistle, N., & Tooth, S. (2018b). Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel. IAHS Publication, 377, 51–56. https://doi.org/10.5194/piahs-377-51-2018
  • Milan, D., Heritage, G., Tooth, S., & Entwistle, N. (2018a). Morphodynamics of bedrock-influenced dryland rivers during extreme floods: Insights from the Kruger National Park, South Africa. GSA Bulletin, 130(11–12), 1825–1841. https://doi.org/10.1130/B31839.1
  • Milan, D. J., Tooth, S., & Heritage, G. L. (2020). Topographic, hydraulic, and vegetative controls on bar and island development in mixed bedrock‐alluvial, multichanneled, dryland rivers. Water Resources Research, 56(5), e2019WR026101. https://doi.org/10.1029/2019WR026101
  • Moon, B. P., & Heritage, G. L. (2001). The contemporary geomorphology of the Letaba River in the Kruger National Park. Koedoe, 44(1), 45–55. https://doi.org/10.4102/koedoe.v44i1.185
  • Murray, A. S., & Wintle, A. G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32(4–5), 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X
  • Murray, A. S., & Wintle, A. G. (2003). The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements, 37(4–5), 377–381. https://doi.org/10.1016/S1350-4487(03)00053-2
  • Prescott, J. R., & Hutton, J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements, 23(2–3), 497–500. https://doi.org/10.1016/1350-4487(94)90086-8
  • Rountree, M. W., Rogers, K. H., & Heritage, G. L. (2000). Landscape state change in the semi-arid Sabie River, Kruger National Park, in response to flood and drought. South African Geographical Journal, 82(3), 173–181. https://doi.org/10.1080/03736245.2000.9713711
  • Rowntree, K. M., & Wadeson, R. A. (1999). A hierarchical framework for categorising the geomorphology of river systems. Water Research Commission Report 497/1/99, Pretoria: WRC,
  • Rowntree, K. M., Wadeson, R. A., & O’Keeffe, J. (2000). The development of a geomorphological classification system for the longitudinal zonation of South African rivers. South African Geographical Journal, 82(3), 163–172. https://doi.org/10.1080/03736245.2000.9713710
  • Saraiva Okello, A. M. L., Masih, I., Uhlenbrook, S., Jewitt, G. P. W., van der Zaag, P., & Riddell, E. (2015). Drivers of spatial and temporal variability of streamflow in the Incomati river basin. Hydrology and Earth System Sciences, 19(2), 657–673. https://doi.org/10.5194/hess-19-657-2015
  • Schutte, I. C. (1986). The general geology of the Kruger National Park. Koedoe, 29(1), 13–37. https://doi.org/10.4102/koedoe.v29i1.517
  • State of the Rivers Report. (2001). Letaba and Luvuvhu river systems. Pretoria: Water Research Commission, WRC report TT 165/01.
  • Thompson, C., Rhodes, E., & Croke, J. (2007). The storage of bed material in mountain stream channels as assessed using Optically Stimulated Luminescence dating. Geomorphology, 83(3–4), 307–321. https://doi.org/10.1016/j.geomorph.2006.02.020
  • Toone, J., Rice, S. P., & Piégay, H. (2014). Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drôme River, southeast France: Contingent responses to external and internal controls. Geomorphology, 205, 5–16. https://doi.org/10.1016/j.geomorph.2012.05.033
  • Tooth, S., Rodnight, H., Duller, G. A. T., McCarthy, T. S., Marren, P. M., & Brandt, D. (2007). Chronology and controls of avulsion along a mixed bedrock-alluvial river. GSA Bulletin, 119(3–4), 452–461. https://doi.org/10.1130/B26032.1
  • Venter, F. J. (1986). Soil patterns associated with the major geological units of the Kruger National Park. Koedoe, 29(1), 125–138. https://doi.org/10.4102/koedoe.v29i1.525
  • Walsh, E. V., Burrough, S. L., & Thomas, D. S. G. (2023). A chronological database assessing the late quaternary palaeoenvironmental record from fluvial sediments in southwestern Africa. Earth-Science Reviews, 236, 104288. https://doi.org/10.1016/j.earscirev.2022.104288
  • Wohl, E., & Beckman, N. D. (2014). Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology, 205, 27–35. https://doi.org/10.1016/j.geomorph.2011.10.022
  • Yanites, B. J. (2018). The dynamics of channel slope, width, and sediment in actively eroding bedrock river systems. Journal of Geophysical Research: Earth Surface, 123(7), 1504–1527. https://doi.org/10.1029/2017JF004405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.