217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using multisource remotely sensed data and cloud computing approaches to map non-native species in the semi-arid savannah rangelands of Mpumalanga, South Africa

ORCID Icon, , , &
Received 14 Feb 2023, Accepted 05 Apr 2024, Published online: 14 Apr 2024

References

  • Adagbasa, E. G., Mukwada, G., & Veettil, B. K. (2022). Mapping vegetation species succession in a mountainous grassland ecosystem using Landsat, ASTER MI, and Sentinel-2 data. Public Library of Science One, 17(1), e0256672. https://doi.org/10.1371/journal.pone.0256672
  • AHPU (Agincourt Health and Population Unit). (2008). Population fact sheet for 2008 community feedback: Belfast Village. Medical Research Council/University of the Witwatersrand Rural Public Health and Health Transitions Research Unit.
  • Amalisana, B., & Hernina, R.(2017, December). Land cover analysis by using pixel-based and object-based image classification method in Bogor. In IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, pp. 012005). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/98/1/012005/meta
  • Anchang, J. Y., Prihodko, L., Ji, W., Kumar, S. S., Ross, C. W., Yu, Q. & Hanan, N. P. (2020). Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Frontiers in Environmental Science, 8, 4. https://doi.org/10.3389/fenvs.2020.00004
  • Arntzen, J. (1998). Economic valuation of communal rangelands in Botswana: A case study. CREED Working Paper Series No. 17. https://www.iied.org/sites/default/files/pdfs/migrate/8096IIED.pdf?
  • Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E., & Harris, A. T. (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29(1), 261–299. https://doi.org/10.1146/annurev.energy.29.062403.102142
  • Baumann, M., Levers, C., Macchi, L., Bluhm, H., Waske, B., Gasparri, N. I., & Kuemmerle, T. (2018). Mapping continuous fields of tree and shrub cover across the gran chaco using Landsat 8 and Sentinel-1 data. Remote Sensing of Environment, 216, 201–211. https://doi.org/10.1016/j.rse.2018.06.044
  • Bonham‐Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Integration of geological datasets for gold exploration in Nova Scotia. Digital Geologic and Geographic Information Systems, 10, 15–23.
  • Borges, J., Higginbottom, T. P., Symeonakis, E., & Jones, M. (2020). Sentinel-1 and Sentinel-2 data for savannah land cover mapping: Optimising the combination of sensors and seasons. Remote Sensing, 12(23), 3862. https://doi.org/10.3390/rs12233862
  • Brandt, M., Tappan, G., Diouf, A. A., Beye, G., Mbow, C., & Fensholt, R. (2017). Woody vegetation die off and regeneration in response to rainfall variability in the west African sahel. Remote Sensing, 9(1), 39. https://doi.org/10.3390/rs9010039
  • Brantley, S. T., Zinnert, J. C., & Young, D. R. (2011). Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies. Remote Sensing of Environment, 115(2), 514–523. https://doi.org/10.1016/j.rse.2010.09.020
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cao, X., Liu, Y., Cui, X., Chen, J., & Chen, X. (2019). Mechanisms, monitoring and modeling of shrub encroachment into grassland: A review. International Journal of Digital Earth, 12(6), 625–641. https://doi.org/10.1080/17538947.2018.1478004
  • Cao, X., Liu, Y., Liu, Q., Cui, X., Chen, X., & Chen, J. (2018). Estimating the age and population structure of encroaching shrubs in arid/semiarid grasslands using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 216, 572–585. https://doi.org/10.1016/j.rse.2018.07.025
  • Cho, M. A., Debba, P., Mathieu, R., Naidoo, L., Van Aardt, J. A. N., & Asner, G. P.(2010). Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Transactions on Geoscience & Remote Sensing, 48(11), 4133–4142.
  • Cho, M. A., Naidoo, L., Mathieu, R., & Asner, G. P. (2011). Mapping savanna tree species using Carnegie Airborne Observatory hyperspectral data resampled to WorldView-2 multispectral configuration. Proc. 34th International Symposium on Remote Sensing of Environment, Sydney, Australia (Vol. 15). www.isprs.org/proceedings/2011/isrse-34/211104015Final00313.pdf
  • Cho, M. A., Skidmore, A. K., & Sobhan, I. (2009). Mapping beech (fagus sylvatica L.) forest structure with airborne hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 11(3), 201–211.
  • Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. (2017). Fusion of sentinel-1A and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718–726.
  • Curtis, B., & Mannheimer, C. (2005). Tree Atlas of Namibia. National Botanical Research Institute, Ministry of Agriculture, Water and Forestry.
  • Dube, K., & Nhamo, G. (2020). Vulnerability of nature-based tourism to climate variability and change: Case of Kariba resort town, zimbabwe. Journal of Outdoor Recreation and Tourism, 29, 100281. https://doi.org/10.1016/j.jort.2020.100281
  • Dube, T., Pandit, S., Shoko, C., Ramoelo, A., Mazvimavi, D., & Dalu, T. (2019). Numerical assessments of leaf area index in tropical savanna rangelands, South Africa using Landsat 8 OLI derived metrics and in-situ measurements. Remote Sensing, 11(7), 829. https://doi.org/10.3390/rs11070829
  • Eastment, C., Humphrey, G., Hoffman, M. T., Gillson, L., & Fidelis, A. (2022). The influence of contrasting fire management practice on bush encroachment: Lessons from Bwabwata National Park, Namibia. Journal of Vegetation Science, 33(2), e13123. https://doi.org/10.1111/jvs.13123
  • Gan, L., Cao, X., Chen, X., He, Q., Cui, X., & Zhao, C. (2022). Mapping shrub coverage in Xilin Gol Grassland with multi-temporal sentinel-2 imagery. Remote Sensing, 14(14), 3266. https://doi.org/10.3390/rs14143266
  • Gil, A., Lobo, A., Abadi, M., Silva, L., & Calado, H. (2013). Mapping invasive woody plants in azores protected areas by using very high-resolution multispectral imagery. European Journal of Remote Sensing, 46(1), 289–304.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • He, Y., D’Odorico, P., & De Wekker, S. F. (2015). The role of vegetation–microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert. Global Change Biology, 21(6), 2141–2154. https://doi.org/10.1111/gcb.12856
  • Higginbottom, T. P., Symeonakis, E., Meyer, H., & van der Linden, S. (2018). Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 88–102. https://doi.org/10.1016/j.isprsjprs.2018.02.010
  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • Kennedy, K. A., & Addison, P. A. (1987). Some considerations for the use of visual estimates of plant cover in biomonitoring. The Journal of Ecology, 75(1), 151–157. https://doi.org/10.2307/2260541
  • Komac, B., Kéfi, S., Nuche, P., Escós, J., & Alados, C. L. (2013). Modeling shrub encroachment in subalpine grasslands under different environmental and management scenarios. Journal of Environmental Management, 121, 160–169. doi: https://doi.org/10.1016/j.jenvman.2013.01.038
  • Lantz, N. J., & Wang, J. (2013). Object-based classification of worldview-2 imagery for mapping invasive common reed, phragmites australis. Canadian Journal of Remote Sensing, 39(4), 328–340.
  • Laurin, G. V., Liesenberg, V., Chen, Q., Guerriero, L., Del Frate, F., Bartolini, A.& Valentini, R. (2013). Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation, 21, 7–16. https://doi.org/10.1016/j.jag.2012.08.002
  • Li, W., Niu, Z., Gao, S., Huang, N., & Chen, H. (2014). Correlating the horizontal and vertical distribution of lidar point clouds with components of biomass in a Picea crassifolia forest. Forests, 5(8), 1910–1930. https://doi.org/10.3390/f5081910
  • Ludwig, M., Morgenthal, T., Detsch, F., Higginbottom, T. P., Valdes, M. L., Nauß, T., & Meyer, H. (2019). Machine learning and multi-sensor based modelling of woody vegetation in the Molopo Area, South Africa. Remote Sensing of Environment, 222, 195–203. https://doi.org/10.1016/j.rse.2018.12.019
  • Macander, M. J., Frost, G. V., Nelson, P. R., & Swingley, C. S. (2017). Regional quantitative cover mapping of tundra plant functional types in Arctic Alaska. Remote Sensing, 9(10), 1024. https://doi.org/10.3390/rs9101024
  • Mishra, N. B., & Crews, K. A. (2014). Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with random forest. International Journal of Remote Sensing, 35(3), 1175–1198. https://doi.org/10.1080/01431161.2013.876120
  • Muchapondwa, E., & Stage, J. (2013). The economic impacts of tourism in Botswana, Namibia and South Africa: Is poverty subsiding? Natural Resources Forum, 37(2), 80–89. https://doi.org/10.1111/1477-8947.12007
  • Municipal Demarcation Board. (2006). Bushbuckridge Local Municipality. Retrieved July 30, 2023, from www.demarcation.org.za
  • Munyati, C., Shaker, P., & Phasha, M. G. (2011). Using remotely sensed imagery to monitor savanna rangeland deterioration through woody plant proliferation: A case study from communal and biodiversity conservation rangeland sites in Mokopane, South Africa. Environmental Monitoring and Assessment, 176, 293–311.
  • Munyati, C., & Sinthumule, N. I. (2016). Change in woody cover at representative sites in the Kruger National Park, South Africa, based on historical imagery. Springer Plus, 5(1), 1–23. https://doi.org/10.1186/s40064-016-3036-1
  • Muoz, A. B. J., Perez, M. P. R., Lois, M. T. A. E., Gonzalez-Cobos, C. L., Antnez, M. G., Aguilar, F. J. C., Llorente, B. P., & Miguez, A. M. (2009). P0189 prevalence rates of medication errors in medication process phases. European Journal of Internal Medicine, 20(1), S68–S69. https://doi.org/10.1016/S0953-6205(09)60209-0
  • Mutanga, O., & Rugege, D. (2006). Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna. International Journal of Remote Sensing, 27(16), 3499–3514. https://doi.org/10.1080/01431160600639735
  • Naidoo, L., Cho, M. A., Mathieu, R., & Asner, G. (2012). Classification of savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 167–179. https://doi.org/10.1016/j.isprsjprs.2012.03.005
  • Naidoo, L., Mathieu, R., Main, R., Wessels, K., & Asner, G. P. (2016). L-band synthetic aperture radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs. International Journal of Applied Earth Observation and Geoinformation, 52, 54–64. https://doi.org/10.1016/j.jag.2016.05.006
  • Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S. M. M., & Borz, S. A. (2022). Land use and land cover mapping using Sentinel-2, Landsat-8 satellite images, and Google Earth Engine: A Comparison of two composition methods. Remote Sensing, 14(9), 1977. https://doi.org/10.3390/rs14091977
  • Olariu, H. G., Malambo, L., Popescu, S. C., Virgil, C., & Wilcox, B. P. (2022). Woody plant encroachment: Evaluating methodologies for semiarid woody species classification from drone images. Remote Sensing, 14(7), 1665. https://doi.org/10.3390/rs14071665
  • Oldeland, J., Dorigo, W., Wesuls, D., & Jürgens, N. (2010). Mapping bush encroaching species by seasonal differences in hyperspectral imagery. Remote Sensing, 2(6), 1416–1438. https://doi.org/10.3390/rs2061416
  • Pfeffer, K., Pebesma, E. J., & Burrough, P. A. (2003). Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology, 18(8), 759–776. https://doi.org/10.1023/B:LAND.0000014471.78787.d0
  • Schmidt, M., & Witte, C. (2010). Monitoring aquatic weeds in a river system using SPOT 5 satellite imagery. Journal of Applied Remote Sensing, 4(1), 043528.
  • Schulz, D., Yin, H., Tischbein, B., Verleysdonk, S., Adamou, R., & Kumar, N. (2021). Land use mapping using sentinel-1 and sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 97–111. https://doi.org/10.1016/j.isprsjprs.2021.06.005
  • Shafeian, E., Fassnacht, F. E., & Latifi, H. (2021). Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with sentinel-2 and very high-resolution data. International Journal of Applied Earth Observation and Geoinformation, 105, 102621. https://doi.org/10.1016/j.jag.2021.102621
  • Sibanda, M., Mutanga, O., & Rouget, M. (2016). Discriminating rangeland management practices using simulated hyspIRI, Landsat 8 OLI, Sentinel 2 MSI, and VENµs spectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 3957–3969. https://doi.org/10.1109/JSTARS.2016.2574360
  • Stafford, W., Birch, C., Etter, H., Blanchard, R., Mudavanhu, S., Angelstam, P. & Marais, C. (2017). The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia. Ecosystem Services, 27, 193–202. https://doi.org/10.1016/j.ecoser.2016.11.021
  • Stevens, N., Erasmus, B. F. N., Archibald, S., & Bond, W. J. (2016). Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150437. https://doi.org/10.1098/rstb.2015.0437
  • Symeonakis, E., Higginbottom, T. P., Petroulaki, K., & Rabe, A. (2018). Optimisation of savannah land cover characterisation with optical and SAR data. Remote Sensing, 10(4), 499. https://doi.org/10.3390/rs10040499
  • Symeonakis, E., Korkofigkas, A., Vamvoukakis, G., Stamou, G., & Arnau-Rosalen, E. (2020). Deep learning monitoring of woody vegetation density in a South African Savannah region. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 43, 1645–1649. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1645-2020
  • Symeonakis, E., Petroulaki, K., & Higginbottom, T. (2016). Landsat-based woody vegetation cover monitoring in southern African savannahs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 563–567. https://doi.org/10.5194/isprs-archives-XLI-B7-563-2016
  • Tassi, A., Gigante, D., Modica, G., DiMartino, L., & Vizzari, M. (2021). Pixel-vs. Object-based Landsat 8 data classification in google earth engine using random forest: The case study of Maiella National Park. Remote Sensing, 13(12), 2299. https://doi.org/10.3390/rs13122299
  • Tsalyuk, M., Kelly, M., & Getz, W. M. (2017). Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 77–91. https://doi.org/10.1016/j.isprsjprs.2017.07.012
  • Urban, M., Schellenberg, K., Morgenthal, T., Dubois, C., Hirner, A., Gessner, U., Mogonong, B., Zhang, Z., Baade, J., Collett, A., & Schmullius, C. (2021). Using Sentinel-1 and Sentinel-2 time series for Slangbos mapping in the Free State Province, South Africa. Remote Sensing, 13(17), 3342. https://doi.org/10.3390/rs13173342
  • Venter, Z. S., Cramer, M. D., & Hawkins, H. J. (2018). Drivers of woody plant encroachment over Africa. Nature Communications, 9(1), 2272. https://doi.org/10.1038/s41467-018-04616-8
  • Venter, Z. S., Scott, S. L., Desmet, P. G., & Hoffman, M. T. (2020). Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 113, 106206. https://doi.org/10.1016/j.ecolind.2020.106206
  • Vermeulen, L. M., Munch, Z., & Palmer, A. (2021). Fractional vegetation cover estimation in southern African rangelands using spectral mixture analysis and Google Earth Engine. Computers and Electronics in Agriculture, 182, 105980. https://doi.org/10.1016/j.compag.2020.105980
  • Vizzari, M. (2022). PlanetScope, Sentinel-2, and Sentinel-1 data integration for object-based land cover classification in Google Earth Engine. Remote Sensing, 14(11), 2628. https://doi.org/10.3390/rs14112628
  • Ward, D. (2005). Do we understand the causes of bush encroachment in African savannas? African Journal of Range and Forage Science, 22(2), 101–105. https://doi.org/10.2989/10220110509485867
  • Wessels, K. J., Colgan, M. S., Erasmus, B. F. N., Asner, G. P., Twine, W. C., Mathieu, R., van Aardt, J. A. N., Fisher, J. T., & Smit, I. P. (2013). Unsustainable fuelwood extraction from South African savannas. Environmental Research Letters, 8(1), 014007. https://doi.org/10.1088/1748-9326/8/1/014007
  • Wessels, K., Mathieu, R., Knox, N., Main, R., Naidoo, L., & Steenkamp, K. (2019). Mapping and monitoring fractional woody vegetation cover in the arid savannas of Namibia using LiDAR training data, machine learning, and ALOS PALSAR data. Remote Sensing, 11(22), 2633. https://doi.org/10.3390/rs11222633
  • Xian, G., Homer, C., Rigge, M., Shi, H., & Meyer, D. (2015). Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment, 168, 286–300. https://doi.org/10.1016/j.rse.2015.07.014
  • Zerrouki, N., & Bouchaffra, D. (2014). Pixel-based or object-based: Which approach is more appropriate for remote sensing image classification? 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 864–869). IEEE. https://ieeexplore.ieee.org/abstract/document/6974020
  • Zhang, W., Brandt, M., Wang, Q., Prishchepov, A. V., Tucker, C. J., Li, Y., Lyu, H., & Fensholt, R. (2019). From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sensing of Environment, 234, 111465. https://doi.org/10.1016/j.rse.2019.111465
  • Zhou, B., Okin, G. S., & Zhang, J. (2020). Leveraging google earth engine (GEE) and machine learning algorithms to incorporate in situ measurement from different times for rangelands monitoring. Remote Sensing of Environment, 236, 111521. https://doi.org/10.1016/j.rse.2019.111521