Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 12
98
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation on volumetric heat transfer coefficient during intermittent spray drying of mannitol solution

&
Pages 2012-2026 | Received 13 Jun 2022, Accepted 09 May 2023, Published online: 24 May 2023

References

  • van Deventer, H.; Houben, R.; Koldeweij, R. New Atomization Nozzle for Spray Drying. Drying Technol. 2013, 31, 891–897. DOI: 10.1080/07373937.2012.735734.
  • Liang, B.; Judson King, C. Factors Influencing Flow Pattrens, Temperature Fields and Consequent Drying Rates in Spray Drying. Drying Technol. 1991, 9, 1–25. DOI: 10.1080/07373939108916639.
  • Goula, A. M.; Adamopoulos, K. G.; Kazakis, N. A. Influence of Spray Drying Conditions on Tomato Powder Properties. Drying Technol. 2004, 22, 1129–1151. DOI: 10.1081/DRT-120038584.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, Í. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Drying Technol. 2016, 34, 1773–1790. DOI: 10.1080/07373937.2016.1233114.
  • Vertruyen, B.; Eshraghi, N.; Piffet, C.; Bodart, J.; Mahmoud, A.; Boschini, F. Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries. Materials 2018, 11, 1076. DOI: 10.3390/ma11071076.
  • Pinto, J. T.; Faulhammer, E.; Dieplinger, J.; Dekner, M.; Makert, C.; Nieder, M.; Paudel, A. Progress in Spray-Drying of Protein Pharmaceuticals: Literature Analysis of Trends in Formulation and Process Attributes. Drying Technol. 2021, 39, 1415–1446. DOI: 10.1080/07373937.2021.1903032.
  • Martins, R. M.; Machado, M. O.; Pereira, S. V.; Nosari, A. B. F. L.; Tacon, L. A.; Freitas, L. A. P. Engineering Active Pharmaceutical Ingredients by Spray Drying: Effects on Physical Properties and in Vitro Dissolution. Drying Technol. 2012, 30, 905–913. DOI: 10.1080/07373937.2012.679348.
  • Menshutina, N.; Lebedev, E.; Mosyurova, A. Experimental Investigation and Modeling of Atomization Aspects in Spray Drying for Production of Pharmaceuticals with Inhalable Size. Drying Technol. 2022, 40, 3591–3601. DOI: 10.1080/07373937.2022.2069805.
  • Ré, M.-I. Formulating Drug Delivery Systems by Spray Drying. Drying Technol. 2006, 24, 433–446. DOI: 10.1080/07373930600611877.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Fourie, P.; Germishuizen, W.; Wong, Y.-L.; Edwards, D. Spray Drying TB Vaccines for Pulmonary Administration. Expert Opin. Biol. Ther. 2008, 8, 857–863. DOI: 10.1517/14712598.8.7.857.
  • Broadhead, J.; Edmond Rouan, S. K.; Rhodes, C. T. The Spray Drying of Pharmaceuticals. Drug Dev. Ind. Pharm. 1992, 18, 1169–1206. DOI: 10.3109/03639049209046327.
  • Tay, J. B. J.; Chua, X.; Ang, C.; Goh, K. K. T.; Subramanian, G. S.; Tan, S. Y.; Lin, E. M. J.; Wu, W.-Y.; Lim, K. Continuous Low-Temperature Spray Drying Approach for Efficient Production of High Quality Native Rice Starch. Drying Technol. 2022, 40, 1758–1773. DOI: 10.1080/07373937.2021.1874967.
  • Ferrari, C. C.; Germer, S. P. M.; de Aguirre, J. M. Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Drying Technol. 2012, 30, 154–163. DOI: 10.1080/07373937.2011.628429.
  • Chen, X. D.; Patel, K. C. Manufacturing Better Quality Food Powders from Spray Drying and Subsequent Treatments. Drying Technol. 2008, 26, 1313–1318. DOI: 10.1080/07373930802330904.
  • Kim, E. H.-J.; Chen, X. D.; Pearce, D. Surface Composition of Industrial Spray-Dried Milk Powders. 2. Effects of Spray Drying Conditions on the Surface Composition. J. Food Eng. 2009, 94, 169–181. DOI: 10.1016/j.jfoodeng.2008.10.020.
  • de Oliveira, A. H.; Mata, M. E. R. M. C.; Fortes, M.; Duarte, M. E. M.; Pasquali, M.; Lisboa, H. M. Influence of Spray Drying Conditions on the Properties of Whole Goat Milk. Drying Technol. 2021, 39, 726–737. DOI: 10.1080/07373937.2020.1714647.
  • Dantas, D.; Pasquali, M. A.; Cavalcanti-Mata, M.; Duarte, M. E.; Lisboa, H. M. Influence of Spray Drying Conditions on the Properties of Avocado Powder Drink. Food Chem. 2018, 266, 284–291. DOI: 10.1016/j.foodchem.2018.06.016.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Wu, Z.; Meor Talib, M. Z.; Tasirin, S. M. CFD Evaluation of Droplet Drying Models in a Spray Dryer Fitted with a Rotary Atomizer. Drying Technol. 2008, 26, 1180–1198. DOI: 10.1080/07373930802306953.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Talib, M. Z. M.; Hua, W. Z.; Tasirin, S. M. Comparative Study of Droplet Drying Models for CFD Modelling. Chem. Eng. Res. Des. 2008, 86, 1038–1048. DOI: 10.1016/j.cherd.2008.04.003.
  • Garrido Makinistian, F.; Gallo, L.; Sette, P.; Salvatori, D.; Bucalá, V. Nutraceutical Tablets from Maqui Berry (Aristotelia Chilensis) Spray-Dried Powders with High Antioxidant Levels. Drying Technol. 2020, 38, 1231–1242. DOI: 10.1080/07373937.2019.1629589.
  • Shofinita, D.; Langrish, T. A. G. Redox (Pro-Oxidant/Antioxidant) Balance in the Spray Drying of Orange Peel Extracts. Drying Technol. 2016, 34, 1719–1725. DOI: 10.1080/07373937.2016.1175471.
  • Aragüez-Fortes, Y.; Robaina-Morales, L. M.; Pino, J. A. Optimization of the Spray-Drying Parameters for Developing Guava Powder. J. Food Process Eng. 2019, 42, e13230. DOI: 10.1111/jfpe.13230.
  • Rivas, J. C.; Cabral, L. M. C.; da Rocha-Leão, M. H. M. Microencapsulation of Guava Pulp Using Prebiotic Wall Material. Braz. J. Food Technol. 2021, 24, e2020213. DOI: 10.1590/1981-6723.21320.
  • Arpagaus, C.; Collenberg, A.; Rütti, D. Laboratory Spray Drying of Materials for Batteries, Lasers, and Bioceramics. Drying Technol. 2019, 37, 426–434. DOI: 10.1080/07373937.2017.1410487.
  • Zheng, W.; Huang, X.; Ren, Y.; Wang, H.; Zhou, S.; Chen, Y.; Ding, X.; Zhou, T. Porous Spherical Na3V2 (PO4)3/C Composites Synthesized via a Spray Drying -Assisted Process with High-Rate Performance as Cathode Materials for Sodium-Ion Batteries. Solid State Ion 2017, 308, 161–166. DOI: 10.1016/j.ssi.2017.06.012.
  • Liu, Q. B.; Liao, S. J.; Song, H. Y.; Liang, Z. X. High-Performance LiFePO 4/C Materials: Effect of Carbon Source on Microstructure and Performance. J. Power Sources 2012, 211, 52–58. DOI: 10.1016/j.jpowsour.2012.03.090.
  • Rajasekar, K.; Raja, B. An Investigation on Heat and Mass Transfer Characteristics during Spray Drying of Saline Water. Sādhanā 2022, 47, 90. DOI: 10.1007/s12046-022-01863-w.
  • Rajasekar, K.; Raja, B. Investigation on Heat and Mass Transfer in Spray Drying Process. J. Engin. Thermophys. 2021, 30, 433–448. DOI: 10.1134/S1810232821030085.
  • Gao, F.; Tang, Z.; Xue, J. Preparation and Characterization of Nano-Particle LiFePO4 and LiFePO4/C by Spray-Drying and Post-Annealing Method. Electrochim. Acta 2007, 53, 1939–1944. DOI: 10.1016/j.electacta.2007.08.048.
  • Chin, S. K.; Law, C. L. Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma Tsugae Murrill. Drying Technol. 2010, 28, 1457–1465. DOI: 10.1080/07373937.2010.482707.
  • Ho, J. C.; Chou, S. K.; Chua, K. J.; Mujumdar, A. S.; Hawlader, M. N. A. Analytical Study of Cyclic Temperature Drying: Effect on Drying Kinetics and Product Quality. J. Food Eng. 2002, 51, 65–75. DOI: 10.1016/S0260-8774(01)00038-3.
  • Chua, K. J.; Chou, S. K.; Hawlader, M. N. A.; Mujumdar, A. S.; Ho, J. C. PH—Postharvest Technology: Modelling the Moisture and Temperature Distribution within an Agricultural Product Undergoing Time-Varying Drying Schemes. Biosyst. Eng. 2002, 81, 99–111. DOI: 10.1006/bioe.2001.0026.
  • Holowaty, S. A.; Ramallo, L. A.; Schmalko, M. E. Intermittent Drying Simulation in a Deep Bed Dryer of Yerba Maté. J. Food Eng. 2012, 111, 110–114. DOI: 10.1016/j.jfoodeng.2012.01.019.
  • Chua, K. J.; Chou, S. K.; Ho, J. C.; Mujumdar, A. S.; Hawlader, M. N. A. Cyclic Air Temperature Drying of Guava Pieces: Effects on Moisture and Ascorbic Acid Contents. Food Bioprod. Process. 2000, 78, 72–78. DOI: 10.1205/096030800532761.
  • Nguyen, D. Q.; Nguyen, T. H.; Allaf, K. Volumetric Heat Transfer Coefficient in Spray Drying of Soymilk Powder. Drying Technol. 2022, 40, 1146–1152. DOI: 10.1080/07373937.2020.1857768.
  • Poós, T.; Szabó, V. Modeling of Heat and Mass Transfer in Fluidized Bed Dryers Using the Volumetric Heat Transfer Coefficient. Part 1: Equations Describing the Simultaneous Heat and Mass Transfer. Drying Technol. 2022, 40, 2335–2344. DOI: 10.1080/07373937.2021.1938112.
  • Szabó, V.; Poós, T. Modeling of Heat and Mass Transfer in Fluidized Bed Dryers Using the Volumetric Heat Transfer Coefficient. Part 2: Calculation Algorithm Based on the Heat and Mass Transfer Model. Drying Technol. 2022, 40, 2345–2359. DOI: 10.1080/07373937.2021.1938111.
  • Poós, T.; Szabó, V. Volumetric Heat Transfer Coefficient in Fluidized-Bed Dryers. Chem. Eng. Technol. 2018, 41, 628–636. DOI: 10.1002/ceat.201700038.
  • Alvarez, P. I.; Shene, C. Experimental Determination of Volumetric Heat Transfer Coefficient in a Rotary Dryer. Drying Technol. 1994, 12, 1605–1627. DOI: 10.1080/07373939408962189.
  • Rousselet, Y.; Dhir, V. K. Numerical Modeling of a co-Current Cascading Rotary Dryer. Food Bioprod. Process. 2016, 99, 166–178. DOI: 10.1016/j.fbp.2016.05.001.
  • Woo, M. W.; Daud, W. R. W.; Tasirin, S. M.; Talib, M. Z. M. Optimization of the Spray Drying Operating Parameters—a Quick Trial-and-Error Method. Drying Technol. 2007, 25, 1741–1747. DOI: 10.1080/07373930701591093.
  • Mahood, H. B.; Campbell, A. N.; Thorpe, R. B.; Sharif, A. O. Experimental Measurements and Theoretical Prediction for the Volumetric Heat Transfer Coefficient of a Three-Phase Direct Contact Condenser. Int. Commun. Heat Mass Transfer 2015, 66, 180–188. DOI: 10.1016/j.icheatmasstransfer.2015.05.020.
  • Naveenprabhu, V.; Suresh, M. Performance Enhancement Studies on Evaporative Cooling Using Volumetric Heat and Mass Transfer Coefficients. Numeri Heat Transf A Appl. 2020, 78, 504–523. DOI: 10.1080/10407782.2020.1793556.
  • Halkarni, S. S.; Sridharan, A.; Prabhu, S. V. Estimation of Volumetric Heat Transfer Coefficient in Randomly Packed Beds of Uniform Sized Spheres with Water as Working Medium. Int. J. Therm. Sci. 2016, 110, 340–355. DOI: 10.1016/j.ijthermalsci.2016.07.012.
  • Gürüf, G.; Solmuş, İ.; Bilen, K.; Bayer, Ö. Experimental Based Numerical Approach for Determination of Volumetric Heat Transfer Coefficients of Modified Graphite Foams. Appl. Therm. Eng. 2020, 174, 115310. DOI: 10.1016/j.applthermaleng.2020.115310.
  • Hashemian, H. M.; Hashemian, M.; Riggsbee, E. T. “New sensor for measurement of low air flow velocity. Phase I final report,” No. NUREG/CR--6334. Nuclear Regulatory Commission, 1995.
  • Heskestad, G.; Smith, H. Investigation of a New Sprinkler Sensitivity Approval Test: The Plunge Test, FMRC Technical Report 22485, Factory Mutual Research Corporation, Norwood, MA, 1976.
  • Hilpert, R. Wärmeabgabe Von Geheizten Drähten Und Rohren im Luftstrom. Forsch Ing-Wes 1933, 4, 215–224. DOI: 10.1007/BF02719754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.