41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of irradiated nonionic surfactant on drug-protein binding

, , &
Received 17 Nov 2023, Accepted 21 Mar 2024, Published online: 02 May 2024

References

  • Al-Bachir, M., Al-Adawi, M. A., & Shamma, M. (2003). Synergetic effect of gamma irradiation and moisture content on decontamination of sewage sludge. Bioresource Technology, 90(2), 139–143. https://doi.org/10.1016/s0960-8524(03)00124-x
  • Alexandridis, P. (1994). Thermodynamics and dynamics of micellization and micelle-solute interactions in block-copolymer and reverse micellar systems.
  • Ali, M. S., Muthukumaran, J., Jain, M., Al-Lohedan, H. A., Farah, M. A., & Alsowilem, O. I. (2022). Experimental and computational investigation on the binding of anticancer drug gemcitabine with bovine serum albumin. Journal of Biomolecular Structure & Dynamics, 40(19), 9144–9157. https://doi.org/10.1080/07391102.2021.1924270
  • Bam, N. B., Randolph, T. W., & Cleland, J. L. (1995). Stability of protein formulations: Investigation of surfactant effects by a novel EPR spectroscopic technique. Pharmaceutical Research, 12(1), 2–11. https://doi.org/10.1023/a:1016286600229
  • Belaidi, A., Guettari, M., & Tajouri, T. (2019). Gamma-ray irradiation-induced variations in structural and electrical properties of PVP neutral polymer in water. Journal of Radioanalytical and Nuclear Chemistry, 322(2), 869–877. https://doi.org/10.1007/s10967-019-06803-3
  • Burton, W. G., & Hannan, R. S. (1957). Use of γ‐radiation for preventing the sprouting of potatoes. Journal of the Science of Food and Agriculture, 8(12), 707–715. https://doi.org/10.1002/jsfa.2740081208
  • Chen, Q., Shen, X., & Gao, H. (2006). One-step synthesis of silver-poly (4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275(1-3), 45–49. https://doi.org/10.1016/j.colsurfa.2005.09.016
  • Chmielewski, A. G., Haji-Saeid, M., & Ahmed, S. (2005). Progress in radiation processing of polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236(1-4), 44–54. https://doi.org/10.1016/j.nimb.2005.03.247
  • Cho, Y., Yang, J. S., & Song, K. B. (1999). Effect of ascorbic acid and protein concentration on the molecular weight profile of bovine serum albumin and β-lactoglobulin by γ-irradiation. Food Research International, 32(7), 515–519. https://doi.org/10.1016/S0963-9969(99)00127-1
  • Cieśla, K., Watzeels, N., & Rahier, H. (2014). Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiation Physics and Chemistry, 99, 18–22. https://doi.org/10.1016/j.radphyschem.2014.02.006
  • Cortés, H., Hernández-Parra, H., Bernal-Chávez, S. A., Del Prado-Audelo, M. L., Caballero-Florán, I. H., Borbolla-Jiménez, F. V., González-Torres, M., Magaña, J. J., & Leyva-Gómez, G. (2021). Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials (Basel, Switzerland), 14(12), 3197. https://doi.org/10.3390/ma14123197
  • Dash, S., Rajesh, P., Joshi, R. G., Rajeswari, S., & Karunanithi, P. (2022). Pre-irradiation of surfactants to enhance their capacity to solubilise drugs and dyes. Journal of the Indian Chemical Society, 99(11), 100751. https://doi.org/10.1016/j.jics.2022.100751
  • Davies, K. J., & Delsignore, M. E. (1987). Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. The Journal of Biological Chemistry, 262(20), 9908–9913.
  • Efentakis, M., Al-Hmoud, H., Buckton, G., & Rajan, Z. (1991). The influence of surfactants on drug release from a hydrophobic matrix. International Journal of Pharmaceutics, 70(1-2), 153–158. https://doi.org/10.1016/0378-5173(91)90175-N
  • El-Bagory, I. M., Bayomi, M. A., Mahrous, G. M., Alanazi, F. K., & Alsarra, I. A. (2010). Effect of gamma irradiation on pluronic gels for ocular delivery of ciprofloxacin: In vitro evaluation. Australian Journal of Basic and Applied Sciences, 4(9), 4490–4498.
  • Gaber, M. H. (2005). Effect of γ-irradiation on the molecular properties of bovine serum albumin. Journal of Bioscience and Bioengineering, 100(2), 203–206. https://doi.org/10.1263/jbb.100.203
  • Garrison, W. M. (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 87(2), 381–398. https://doi.org/10.1021/cr00078a006
  • Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Cheipesh, T. A., Roshal, A. D., Zibarov, A. M., Shestopalova, A. V., Semenov, M. A., & Glibitskiy, G. M. (2018). Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures. Radiation Physics and Chemistry, 144(June), 231–237. https://doi.org/10.1016/j.radphyschem.2017.08.019
  • Grewal, A. S., Bhardwaj, S. K., Patro, S. K., & Kanungo, S. K. (2012). Visible spectrophotometric estimation of ornidazole in pure and pharmaceutical formulation. International Journal of ChemTech Research, 4(3), 1044–1048.
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. https://doi.org/10.1038/358209a0
  • Hema, M., Tamilselvi, P., & Pandaram, P. (2017). Conductivity enhancement in SiO2 doped PVA:PVDF nanocomposite polymer electrolyte by gamma ray irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 403, 13–20. https://doi.org/10.1016/j.nimb.2017.04.074
  • Ivashkevich, A., Redon, C. E., Nakamura, A. J., Martin, R. F., & Martin, O. A. (2012). Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Letters, 327(1-2), 123–133. https://doi.org/10.1016/j.canlet.2011.12.025
  • Kayal, T. A., Panetta, D., Canciani, B., Losi, P., Tripodi, M., Burchielli, S., Ottoni, P., Salvadori, P. A., & Soldani, G. (2015). Evaluation of the effect of a gamma irradiated DBM-Pluronic F127 composite on bone regeneration in wistar rat. PloS One, 10(4), e0125110. https://doi.org/10.1371/journal.pone.0125110
  • Kovler, K., Friedmann, H., Michalik, B., Schroeyers, W., Tsapalov, A., Antropov, S., Bituh, T., & Nicolaides, D. (2017). Basic aspects of natural radioactivity. 1st ed. In Naturally occurring radioactive materials in construction: integrating radiation protection in reuse (COST Action Tu1301 NORM4BUILDING). Elsevier Ltd.
  • Lee, S., Lee, S., & Song, K. B. (2003). Effect of gamma-irradiation on the physicochemical properties of porcine and bovine blood plasma proteins. Food Chemistry, 82(4), 521–526. https://doi.org/10.1016/S0308-8146(02)00592-7
  • Lubis, R., Olejniczak, J., Rosiak, J., & Kroh, J. (1990). System for measurement of changes of lsi in polymer solution after electron pulse. Radiation Physics and Chemistry, 36(2), 249–252. https://doi.org/10.1016/1359-0197(90)90252-D
  • Marzougui, K., Hamzaoui, A. H., Farah, K., & Ben Nessib, N. (2008). Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiation Measurements, 43(7), 1254–1257. https://doi.org/10.1016/j.radmeas.2008.05.009
  • Mine, S., & Yekta, Ö. (2009). Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. FABAD Journal of Pharmaceutical Sciences, 34(1), 43–53.
  • Mukherjee, M., Gangopadhyay, K., Das, R., & Purkayastha, P. (2020). Development of non-ionic surfactant and protein-coated ultrasmall silver nanoparticles: increased viscoelasticity enables potency in biological applications. ACS Omega, 5(15), 8999–9006. https://doi.org/10.1021/acsomega.0c00825
  • Naikwadi, A. T., Sharma, B. K., Bhatt, K. D., & Mahanwar, P. A. (2022). Gamma radiation processed polymeric materials for high performance applications: A review. Frontiers in Chemistry, 10(March), 837111. https://doi.org/10.3389/fchem.2022.837111
  • Narang, H., Kumar, A., Bhat, N., Pandey, B. N., & Ghosh, A. (2015). Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial-mesenchymal transition and cancer-stem cell trait as biological end points. Mutation Research, 780, 35–46. https://doi.org/10.1016/j.mrfmmm.2015.07.006
  • Nikolaidis, A., & Moschakis, T. (2017). Studying the denaturation of bovine serum albumin by a novel approach of difference-UV analysis. Food Chemistry, 215, 235–244. https://doi.org/10.1016/j.foodchem.2016.07.133
  • Nouri, J., & Toofanian, F. (2001). Extension of storage of onions and potatoes by gamma irradiation. Pakistan Journal of Biological Sciences 4(10), 1275–1278.
  • Paull, R. E. (1996). Ripening behavior of papaya (Carica papaya L.) exposed to gamma irradiation. Postharvest Biology and Technology, 7(4), 359–370. https://doi.org/10.1016/0925-5214(95)00049-6
  • Perkowski, J., & Mayer, J. (1992). Gamma-radiolysis of Triton X-100 aqueous solution. Journal of Radioanalytical and Nuclear Chemistry Articles, 157(1), 27–36. https://doi.org/10.1007/BF02039774
  • Peters, T. Jr. (1985). Serum albumin. In C. B. Anfinsen, J. T. Edsall, and F. M. Richards, (eds.). Advances in protein chemistry Academic Press. 37, 161–245.
  • Raghuvanshi, S.K., Ahmad, Bashir, Srivastava, A.K., Krishna, J.B.M., Wahab, M.A., Siddhartha. 2012. Effect of gamma irradiation on the optical properties of UHMWPE (Ultra-high-molecular-weight-polyethylene) polymer. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 271, 44–47. https://doi.org/10.1016/j.nimb.2011.11.001
  • Raj, E. P., Karunanithi, P., Rajarajan, M., & Dash, S. (2023). Solubilization of ornidazole in single and mixed polymeric micellar medium of Pluronic F-127 and L-35. Journal of Polymer Research, 30(4), 1–15. https://doi.org/10.1007/s10965-023-03552-6
  • Rosén, C. G. (1971). Structural changes in solid proteins exposed to ionizing radiation: Gamma-irradiated bovine serum albumin as a model system. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 19(6), 587–601. https://doi.org/10.1080/09553007114550761
  • Roy, S., & Das, T. K. (2014). Spectroscopic studies of interaction between biologically synthesized silver nanoparticles and bovine serum albumin. Journal of Nanoscience and Nanotechnology, 14(7), 4899–4905. https://doi.org/10.1166/jnn.2014.9508
  • Saad, A. F., Ibraheim, M. H., Nwara, A. M., & Kandil, S. A. (2018). Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation. Radiation Physics and Chemistry, 145, 122–129. https://doi.org/10.1016/j.radphyschem.2017.10.011
  • Sarmah, K., & Roy, J. D. (2022). In silico study of bioremediation property of microbial laccase enzymes 3CG8 and 1GYC. Journal of Applied and Fundamental Sciences, 8(1), 13–38.
  • Sharma, D., Singh, A., Kukreti, S., Pathak, M., Kaur, L., Kaushik, V., & Ojha, H. (2020). Protection by ethyl pyruvate against gamma radiation induced damage in bovine serum albumin. International Journal of Biological Macromolecules, 150, 1053–1060. https://doi.org/10.1016/j.ijbiomac.2019.10.110
  • Silva Aquino, K. A. (2012). Sterilization by gamma irradiation. Gamma Radiation, 9, 172–202.
  • Singh, S., & Prasher, S. (2005). The optical, chemical and spectral response of gamma-irradiated Lexan polymeric track recorder. Radiation Measurements, 40(1), 50–54. https://doi.org/10.1016/j.radmeas.2004.11.005
  • Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 252, 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
  • Siri, M., Grasselli, M., & Alonso, S. D V. (2020). Correlation between assembly structure of a gamma irradiated albumin nanoparticle and its function as a drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(June), 125176. https://doi.org/10.1016/j.colsurfa.2020.125176
  • Sokolnikov, M. E., Gilbert, E. S., Preston, D. L., Ron, E., Shilnikova, N. S., Khokhryakov, V. V., Vasilenko, E. K., & Koshurnikova, N. A. (2008). Lung, liver and bone cancer mortality in Mayak workers. International Journal of Cancer, 123(4), 905–911. https://doi.org/10.1002/ijc.23581
  • Spinks, J. W. T., & Woods, R. J. (1990). An introduction to radiation chemistry. Wiley.
  • Tadros, T. (1982). Zeta potential in colloid science. Principles and application. Colloids and Surfaces, 5(1), 79–80. https://doi.org/10.1016/0166-6622(82)80060-7
  • Tapia-Guerrero, Y. S., Del Prado-Audelo, M. L., Borbolla-Jiménez, F. V., Giraldo Gomez, D. M., García-Aguirre, I., Colín-Castro, C. A., Morales-González, J. A., Leyva-Gómez, G., & Magaña, J. J. (2020). Effect of UV and gamma irradiation sterilization processes in the properties of different polymeric nanoparticles for biomedical applications. Materials, 13(5), 1090. https://doi.org/10.3390/ma13051090
  • Teralı, K. (2018). An evaluation of neonicotinoids’ potential to inhibit human cholinesterases: Protein–ligand docking and interaction profiling studies. Journal of Molecular Graphics & Modelling, 84(2), 54–63. https://doi.org/10.1016/j.jmgm.2018.06.013
  • Sawai, T., Shimokowa, T., Miki, Y., Oseko, K., & Sawai, T. (1978). Effect of 60Co γ irradiation on dilute aqueous solution of surfactant. Radioisotopes, 27(1), 20–26. https://doi.org/10.3769/radioisotopes.27.20
  • Thomas, A. G. R., Ridgers, C. P., Bulanov, S. S., Griffin, B. J., & Mangles, S. P. D. (2012). Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with awakefield-accelerated electron beam. Physical Review X, 2(4), 1–13. https://doi.org/10.1103/PhysRevX.2.041004
  • Ulanski, P., Bothe, E., Rosiak, J. M., & von Sonntag, C. (1994). OH‐radical‐induced crosslinking and strand breakage of poly(vinyl alcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study. Macromolecular Chemistry and Physics, 195(4), 1443–1461. https://doi.org/10.1002/macp.1994.021950427
  • Ulański, P., Janik, I., & Rosiak, J. M. (1998). Radiation formation of polymeric nanogels. Radiation Physics and Chemistry, 52(1-6), 289–294. https://doi.org/10.1016/S0969-806X(98)00155-8
  • Valdés-Díaz, G., Rodríguez-Calvo, S., Pérez-Gramatges, A., Rapado-Paneque, M., Fernandez-Lima, F. A., Ponciano, C. R., & da Silveira, E. F. (2007). Effects of gamma radiation on phase behaviour and critical micelle concentration of Triton X-100 aqueous solutions. Journal of Colloid and Interface Science, 311(1), 253–261. https://doi.org/10.1016/j.jcis.2007.02.081
  • Woods, R. J., & Pikaev, A. K. (1994). Selected topics in radiation chemistry. Applied Radiation Chemistry: Radiation Processing, 6, 165–210.
  • Zarei, H., Bahreinipour, M., Eskandari, K., MousaviZarandi, S. A., & Ardestani, S. K. (2017). Spectroscopic study of gamma irradiation effect on the molecular structure of bovine serum albumin. Vacuum, 136, 91–96. https://doi.org/10.1016/j.vacuum.2016.11.029
  • Zhao, S., Yang, X., Garamus, V. M., Handge, U. A., Bérengère, L., Zhao, L., Salamon, G., Willumeit, R., Zou, A., & Fan, S. (2014). Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: Effects on physical properties. Langmuir: The ACS Journal of Surfaces and Colloids, 30(23), 6920–6928. https://doi.org/10.1021/la501141m
  • Zolese, G., Falcioni, G., Bertoli, E., Galeazzi, R., Wozniak, M., Wypych, Z., Gratton, E., & Ambrosini, A. (2000). Steady-state and time resolved fluorescence of albumins interacting with N-oleylethanolamine, a component of the endogenous N-acylethanolamines, proteins: Structure. Proteins: Structure, Function, and Genetics, 40(1), 39–48. https://doi.org/10.1002/(SICI)1097-0134(20000701)40:1<39::AID-PROT60>3.0.CO;2-N

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.