102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of cathinone analogs targeting human dopamine transporter using molecular modeling

, , , , , & show all
Received 16 Aug 2023, Accepted 20 Mar 2024, Published online: 03 May 2024

References

  • Alvarez-Ginarte, Y. M., Montero-Cabrera, L. A., de la Vega, J. M. G., Noheda-Marín, P., Marrero-Ponce, Y., & Ruíz-García, J. A. (2011). Anabolic and androgenic activities of 19-nor-testosterone steroids: QSAR study using quantum and physicochemical molecular descriptors. The Journal of Steroid Biochemistry and Molecular Biology, 126(1-2), 35–45. https://doi.org/10.1016/j.jsbmb.2011.04.003
  • Araújo, A. M., Valente, M. J., Carvalho, M., Dias da Silva, D., Gaspar, H., Carvalho, F., de Lourdes Bastos, M., & Guedes de Pinho, P. (2015). Raising awareness of new psychoactive substances: Chemical analysis and in vitro toxicity screening of ‘legal high’ packages containing synthetic cathinones. Archives of Toxicology, 89(5), 757–771. https://doi.org/10.1007/s00204-014-1278-7
  • Batisse, A., Eiden, C., Peyriere, H., & Djezzar, S, French Addictovigilance Network. (2020). Use of new psychoactive substances to mimic prescription drugs: The trend in France. Neurotoxicology, 79, 20–24. https://doi.org/10.1016/j.neuro.2020.03.015
  • Baumann, M. H., Walters, H. M., Niello, M., & Sitte, H. H. (2018). Neuropharmacology of synthetic cathinones (pp. 113–142). https://doi.org/10.1007/164_2018_178
  • Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bhandare, V. V., & Ramaswamy, A. (2018). The proteinopathy of D169G and K263E mutants at the RNA Recognition Motif (RRM) domain of tar DNA-binding protein (tdp43) causing neurological disorders: A computational study. Journal of Biomolecular Structure & Dynamics, 36(4), 1075–1093. https://doi.org/10.1080/07391102.2017.1310670
  • Carbonniere, P., Lucca, T., Pouchan, C., Rega, N., & Barone, V. (2005). Vibrational computations beyond the harmonic approximation: Performances of the B3LYP density functional for semirigid molecules. Journal of Computational Chemistry, 26(4), 384–388. https://doi.org/10.1002/jcc.20170
  • Concheiro, M., Anizan, S., Ellefsen, K., & Huestis, M. A. (2013). Simultaneous quantification of 28 synthetic cathinones and metabolites in urine by liquid chromatography-high resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 405(29), 9437–9448. https://doi.org/10.1007/s00216-013-7386-z
  • Coppola, M., & Mondola, R. (2012a). 3,4-Methylenedioxypyrovalerone (MDPV): Chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicology Letters, 208(1), 12–15. https://doi.org/10.1016/j.toxlet.2011.10.002
  • Coppola, M., & Mondola, R. (2012b). Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food. Toxicology Letters, 211(2), 144–149. https://doi.org/10.1016/j.toxlet.2012.03.009
  • Coppola, M., Mondola, R., Oliva, F., Picci, R. L., Ascheri, D., & Trivelli, F. (2016). Treating the phenomenon of new psychoactive substances. In Neuropathology of drug addictions and substance Misuse (pp. 679–686). Elsevier. https://doi.org/10.1016/B978-0-12-800213-1.00063-8
  • Current NPS threats. (2019). https://www.unodc.org/documents/scientific/Current_NPS_Threats_Volume_I.pdf, (n.d.).
  • Dennington, R., Keith, T. A., & Millam, J. M, GaussView, Version 6. (2016). Semichem Inc., Shawnee Mission.
  • Ellefsen, K. N., Concheiro, M., & Huestis, M. A. (2016). Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metabolism Reviews, 48(2), 237–265. https://doi.org/10.1080/03602532.2016.1188937
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, Chapter 5(1), Unit–UnU5.6. https://doi.org/10.1002/0471250953.bi0506s15
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09. Gaussian, Inc.
  • Garrido, N. M., Economou, I. G., Queimada, A. J., Jorge, M., & Macedo, E. A. (2012). Prediction of the n ‐hexane/water and 1‐octanol/water partition coefficients for environmentally relevant compounds using molecular simulation. AIChE Journal, 58(6), 1929–1938. https://doi.org/10.1002/aic.12718
  • Garrido, N. M., Queimada, A. J., Jorge, M., Macedo, E. A., & Economou, I. G. (2009). 1-Octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation-free energies. Journal of Chemical Theory and Computation, 5(9), 2436–2446. https://doi.org/10.1021/ct900214y
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gołembiowska, K., & Kamińska, K. (2018). Effects of synthetic cathinones on brain neurotransmitters. In J. Zawilska (Ed.), Synthetic Cathinones. Current Topics in Neurotoxicity (Vol. 12, pp. 117–124). Cham: Springer. https://doi.org/10.1007/978-3-319-78707-7_7
  • Gopalakrishnan, K., Sowmiya, G., Sheik, S. S., & Sekar, K. (2007). Ramachandran plot on the web (2.0). Protein and Peptide Letters, 14(7), 669–671. https://doi.org/10.2174/092986607781483912
  • Guirguis, A. (2017). New psychoactive substances: A public health issue. The International Journal of Pharmacy Practice, 25(5), 323–325. https://doi.org/10.1111/ijpp.12313
  • Hickey, A. L., & Rowley, C. N. (2014). Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. The Journal of Physical Chemistry A, 118(20), 3678–3687. https://doi.org/10.1021/jp502475e
  • Jain, P., Satija, J., & Sudandiradoss, C. (2023). Discovery of andrographolide hit analog as a potent cyclooxygenase-2 inhibitor through consensus MD-simulation, electrostatic potential energy simulation and ligand efficiency metrics. Scientific Reports, 13(1), 8147. https://doi.org/10.1038/s41598-023-35192-7
  • Joshi, B. P., Bhandare, V. V., Vankawala, M., Patel, P., Patel, R., Vyas, B., & Krishnamurty, R. (2023). Friedelin, a novel inhibitor of CYP17A1 in prostate cancer from Cassia tora. Journal of Biomolecular Structure & Dynamics, 41(19), 9695–9720. https://doi.org/10.1080/07391102.2022.2145497
  • Kelly, J. P. (2011). Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Testing and Analysis, 3(7-8), 439–453. https://doi.org/10.1002/dta.313
  • Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., Cho, J. M., Yun, G., & Lee, J. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences. 9(6), 304–316. https://doi.org/10.1016/j.ajps.2014.05.005
  • Kumbhar, B. V., & Bhandare, V. V. (2021). Exploring the interaction of Peloruside-A with drug resistant αβII and αβIII tubulin isotypes in human ovarian carcinoma using a molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 39(6), 1990–2002. https://doi.org/10.1080/07391102.2020.1745689
  • Kumbhar, B. V., Panda, D., & Kunwar, A. (2018). Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. PLoS One, 13(3), e0194934. https://doi.org/10.1371/journal.pone.0194934
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2012). PROCHECK: Validation of protein-structure coordinates. In International Tables for Crystallography (Vol. F, ch. 21.4, pp. 684–687). https://doi.org/10.1107/97809553602060000882
  • Liu, X., Testa, B., & Fahr, A. (2011). Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research, 28(5), 962–977. https://doi.org/10.1007/s11095-010-0303-7
  • Lu, J., Wang, C., & Zhang, Y. (2019). Predicting molecular energy using force-field optimized geometries and atomic vector representations learned from an improved deep tensor neural network. Journal of Chemical Theory and Computation, 15(7), 4113–4121. https://doi.org/10.1021/acs.jctc.9b00001
  • Majchrzak, M., Celiński, R., Kuś, P., Kowalska, T., & Sajewicz, M. (2018). The newest cathinone derivatives as designer drugs: An analytical and toxicological review. Forensic Toxicology, 36(1), 33–50. https://doi.org/10.1007/s11419-017-0385-6
  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry. B, 113(18), 6378–6396. https://doi.org/10.1021/jp810292n
  • Mehdipour, A. R., Safarpour, M. A., Taghavi, F., & Jamali, M. (2009). Density functional theory-based quantitative structure activity relationship (QSAR) study of alkanol and alkanthiol derivatives. QSAR & Combinatorial Science, 28(5), 568–575. https://doi.org/10.1002/qsar.200860124
  • Miliano, C., Serpelloni, G., Rimondo, C., Mereu, M., Marti, M., & De Luca, M. A. (2016). Neuropharmacology of New Psychoactive Substances (NPS): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Frontiers in Neuroscience, 10, 153. https://doi.org/10.3389/fnins.2016.00153
  • Mladěnka, P., Applová, L., Patočka, J., Costa, V. M., Remiao, F., Pourová, J., Mladěnka, A., Karlíčková, J., Jahodář, L., Vopršalová, M., Varner, K. J., & Štěrba, M, TOX-OER and CARDIOTOX Hradec Králové Researchers and Collaborators. (2018). Comprehensive review of cardiovascular toxicity of drugs and related agents. Medicinal Research Reviews, 38(4), 1332–1403. https://doi.org/10.1002/med.21476
  • Mohammadi, M., & Khanmohammadi, A. (2019). Molecular structure, QTAIM and bonding character of cation–π interactions of mono- and divalent metal cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with drug of acetaminophen. Theoretical Chemistry Accounts, 138(8), 101. https://doi.org/10.1007/s00214-019-2492-4
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murashov, V. V., & Leszczynski, J. (2000). A comparison of the B3LYP and MP2 methods in the calculation of phosphate complexes. Journal of Molecular Structure: THEOCHEM, 529(1-3), 1–14. https://doi.org/10.1016/S0166-1280(00)00524-8
  • Murray, J. S., & Politzer, P. (2017). Molecular electrostatic potentials and noncovalent interactions. WIREs Computational Molecular Science, 7(6), e1326. https://doi.org/10.1002/wcms.1326
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Parthasarathi, R., Subramanian, V., Roy, D. R., & Chattaraj, P. K. (2004). Electrophilicity index as a possible descriptor of biological activity. Bioorganic & Medicinal Chemistry, 12(21), 5533–5543. https://doi.org/10.1016/j.bmc.2004.08.013
  • Rajhi, A. A., Salih, W. K., Mekkey, S. M., Dhahi, H. A., Shather, A. H., Duhduh, A. A., Alamri, S., & Abbas, Z. S. (2023). Development of a drug delivery system for thioguanine-based anticancer drugs for enhancing their effectiveness. Inorganic Chemistry Communications. 155, 111022. https://doi.org/10.1016/j.inoche.2023.111022
  • Rashid, M., Khalid, M., Ashraf, A., Saleem, T., Shafiq, I., Shakil, M. A., Zainab, B., El-Kott, A. F., Yaqub, M., & Shafiq, Z. (2023). Multicomponent synthesis of pyrido[2,3- b] pyrazine derivatives: Electrochemical DNA sensing, nonlinear optical properties and biological activity. RSC Advances, 13(46), 32160–32174. https://doi.org/10.1039/D3RA05365B
  • Rokhina, E. V., Vattikonda, N. S., Johnson, C., & Suri, R. P. S. (2012). Ozonation of a mixture of estrogens and progestins in aqueous solution: Interpretation of experimental results by computational methods. Chemosphere, 92(8), 1064–1066. https://doi.org/10.1016/j.chemosphere.2012.05.084
  • Russell, J. M. (2000). Sodium-potassium-chloride cotransport. Physiological Reviews, 80(1), 211–276. https://doi.org/10.1152/physrev.2000.80.1.211
  • Samdani, A., & Vetrivel, U. (2018). POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Computational Biology and Chemistry, 74, 39–48. https://doi.org/10.1016/j.compbiolchem.2018.02.012
  • Segurado, A. M., Ahmad, S. M., Neng, N. R., Maniés-Sequeira, M. M., Gaspar, H., & Nogueira, J. M. F. (2022). Simple analytical strategy for screening three synthetic cathinones (α-PVT, α-PVP, and MDPV) in oral fluids. Analytica, 3(1), 14–23. https://doi.org/10.3390/analytica3010002
  • Shafi, A., Berry, A. J., Sumnall, H., Wood, D. M., & Tracy, D. K. (2020). New psychoactive substances: A review and updates. Therapeutic Advances in Psychopharmacology, 10, 2045125320967197. https://doi.org/10.1177/2045125320967197
  • Simmler, L., Buser, T., Donzelli, M., Schramm, Y., Dieu, L.-H., Huwyler, J., Chaboz, S., Hoener, M., & Liechti, M. (2013). Pharmacological characterization of designer cathinones in vitro. British Journal of Pharmacology, 168(2), 458–470. https://doi.org/10.1111/j.1476-5381.2012.02145.x
  • Singh, J. S., Khan, M., & Uddin, S. (2023). A DFT study of vibrational spectra of 5-chlorouracil with molecular structure, HOMO–LUMO, MEPs/ESPs and thermodynamic properties. Polymer Bulletin (Berlin, Germany), 80(3), 3055–3083. https://doi.org/10.1007/s00289-022-04181-7
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4(2), 297–306. https://doi.org/10.1021/ct700248k
  • Torres, E., & DiLabio, G. A. (2012). A (Nearly) universally applicable method for modeling noncovalent interactions using B3LYP. The Journal of Physical Chemistry Letters, 3(13), 1738–1744. https://doi.org/10.1021/jz300554y
  • Uttarkar, A., Kishore, A. P., Srinivas, S. M., Rangappa, S., Kusanur, R., & Niranjan, V. (2023). Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. Journal of Biomolecular Structure & Dynamics, 41(5), 1561–1573. https://doi.org/10.1080/07391102.2021.2022536
  • Valente, M. J., Araújo, A. M., Bastos, M. D L., Fernandes, E., Carvalho, F., Guedes de Pinho, P., & Carvalho, M. (2016). Editor’s highlight: Characterization of hepatotoxicity mechanisms triggered by designer cathinone drugs (β-keto amphetamines). Toxicological Sciences: An Official Journal of the Society of Toxicology, 153(1), 89–102. https://doi.org/10.1093/toxsci/kfw105
  • Valente, M. J., Guedes de Pinho, P., de Lourdes Bastos, M., Carvalho, F., & Carvalho, M. (2014). Khat and synthetic cathinones: A review. Archives of Toxicology, 88(1), 15–45. https://doi.org/10.1007/s00204-013-1163-9
  • Vujović, M., Ragavendran, V., Arsić, B., Kostić, E., & Mladenović, M. (2020). DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones. Open Chemistry, 18(1), 185–195. https://doi.org/10.1515/chem-2020-0021
  • Wang, K. H., Penmatsa, A., & Gouaux, E. (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 521(7552), 322–327. https://doi.org/10.1038/nature14431
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics (Oxford, England), 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Watterson, L. R., & Olive, M. F. (2014). Synthetic cathinones and their rewarding and reinforcing effects in rodents. Advances in Neuroscience (Hindawi), 2014, 209875–209879. () https://doi.org/10.1155/2014/209875
  • Wojcieszak, J., Andrzejczak, D., Woldan-Tambor, A., & Zawilska, J. B. (2016). Cytotoxic activity of pyrovalerone derivatives, an emerging group of psychostimulant designer cathinones. Neurotoxicity Research, 30(2), 239–250. https://doi.org/10.1007/s12640-016-9640-6
  • Yadav-Samudrala, B. J., Eltit, J. M., & Glennon, R. A. (2019). Synthetic cathinone analogues structurally related to the central stimulant methylphenidate as dopamine reuptake inhibitors. ACS Chemical Neuroscience, 10(9), 4043–4050. https://doi.org/10.1021/acschemneuro.9b00284
  • Zawilska, J. B., & Wojcieszak, J. (2013). Designer cathinones—An emerging class of novel recreational drugs. Forensic Science International, 231(1-3), 42–53. https://doi.org/10.1016/j.forsciint.2013.04.015
  • Zhan, C.-G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. The Journal of Physical Chemistry A, 107(20), 4184–4195. https://doi.org/10.1021/jp0225774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.