Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Latest Articles
295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Systematic trends in the substitution mechanisms of minor elements in cassiterite

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 05 Jun 2023, Accepted 31 Jan 2024, Published online: 18 Apr 2024

References

  • Africano, F., Rompaey, G. V., Bernard, A., & Guern, F. L. (2014). Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth, Planets and Space, 54(3), 275–286. https://doi.org/10.1186/BF03353027
  • Ahmad, M. (1995). Genesis of tin and tantalum mineralization in pegmatites from the Bynoe area, Pine Creek Geosyncline, Northern Territory. Australian Journal of Earth Sciences, 42(5), 519–534. https://doi.org/10.1080/08120099508728222
  • Allison, T. C. (2013). NIST-JANAF Thermochemical Tables – SRD 13 (1.0.2) [dataset]. National Institute of Standards and Technology. https://doi.org/10.18434/T42S31
  • Benites, D., Torró, L., Vallance, J., Laurent, O., Quispe, P., Rosas, S., Uzieda, M. F., Holm-Denoma, C. S., Pianowski, L. S., Camprubí, A., Colás, V., Fernández-Baca, A., Giraldo, L., Chelle-Michou, C., Sáez, J., Kouzmanov, K., & Fontboté, L. (2022). Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn–Pb–Ag–In–Sn–Cu deposit, Pasco, Peru. Mineralium Deposita, 57(3), 481–507. https://doi.org/10.1007/s00126-021-01066-z
  • Bennett, J. M., Kemp, A. I. S., & Roberts, M. P. (2020). Microstructural controls on the chemical heterogeneity of cassiterite revealed by cathodoluminescence and elemental X-ray mapping. American Mineralogist, 105(1), 58–76. https://doi.org/10.2138/am-2020-6964
  • Bhalla, P., Holtz, F., Linnen, R. L., & Behrens, H. (2005). Solubility of cassiterite in evolved granitic melts: Effect of t, fO2, and additional volatiles. Lithos, 80(1-4), 387–400. https://doi.org/10.1016/j.lithos.2004.06.014
  • Birch, W. D. (1984). Quartz–topaz–loellingite rocks near Eldorado, Victoria. Australian Journal of Earth Sciences, 31(3), 269–278. https://doi.org/10.1080/14400958408527929
  • Blevin, P. L., & Norman, M. D. (2010). Cassiterite: The zircon of mineral systems – A scoping study. Poster.
  • Blissett, A. H. (1959). The geology of the Rossarden-Storeys Creek District (Geological Survey of Tasmania, Bulletin No. 46). Tasmanian Department of Mines.
  • Blundy, J. D., & Wood, B. J. (1994). Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372(6505), 452–454. https://doi.org/10.1038/372452a0
  • Blundy, J. D., & Wood, B. J. (2003). Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3-4), 383–397. https://doi.org/10.1016/s0012-821x(03)00129-8
  • Bolzan, A. A., Fong, C., Kennedy, B. J., & Howard, C. J. (1997). Structural studies of rutile-type metal dioxides. Acta Crystallographica Section B Structural Science, 53(3), 373–380. https://doi.org/10.1107/S0108768197001468
  • Botelho, N. F., & Moura, M. A. (1998). Granite-ore deposit relationships in Central Brazil. Journal of South American Earth Sciences, 11(5), 427–438. https://doi.org/10.1016/s0895-9811(98)00026-1
  • Breiter, K., Korbelová, Z., Chládek, Š., Uher, P., Knesl, I., Rambousek, P., Honig, S., & Šešulka, V. (2017). Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic). European Journal of Mineralogy, 29(4), 727–738. https://doi.org/10.1127/ejm/2017/0029-2650
  • Brown, R. E., Stroud, W. J. (1993). Mineralisation related to the Gilgai Granite, Tingha-Inverell area. New England Orogen 1993 Conference Proceedings, 431–447.
  • Carr, P. A., Norman, M. D., & Bennett, V. C. (2017). Assessment of crystallographic orientation effects on secondary ion mass spectrometry (SIMS) analysis of cassiterite. Chemical Geology, 467, 122–133. https://doi.org/10.1016/j.chemgeo.2017.08.003
  • Černý, P., Blevin, P. L., Cuney, M., & London, D. (2005). Granite-related ore deposits. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Eds.), Economic Geology, 100th Anniversary Volume (pp. 337–370). Society of Economic Geologists.
  • Černý, P., Chapman, R., Ferreira, K., & Smeds, S.-A. (2004). Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varuträsk granitic pegmatite, Sweden: The case of an anomalous columbite–tantalite trend. American Mineralogist, 89(4), 505–518. https://doi.org/10.2138/am-2004-0405
  • Černý, P., & Ercit, T. S. (2005). The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6), 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005
  • Černý, P., Ercit, T. S., & Wise, M. A. (1992). The tantalite–tapiolite gap; natural assemblages versus experimental data. The Canadian Mineralogist, 30(3), 587–596.
  • Chakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic" tungsten to “green" neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. https://doi.org/10.1016/j.oregeorev.2014.06.008
  • Chang, E., & Graham, E. K. (1975). The elastic constants of cassiterite SnO2 and their pressure and temperature dependence. Journal of Geophysical Research, 80(17), 2595–2599. https://doi.org/10.1029/JB080i017p02595
  • Chao, E. C. T., Fahey, J. J., Littler, J., & Milton, D. J. (1962). Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Astrogeologic Studies: Annual Progress Report. Crater Investigations. Part B, 10.
  • Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • Cheng, Y., Mao, J., Chang, Z., & Pirajno, F. (2013). The origin of the world class tin–polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar–39Ar geochronology. Ore Geology Reviews, 53, 50–62. https://doi.org/10.1016/j.oregeorev.2012.12.008
  • Cheng, Y., Spandler, C., Kemp, A., Mao, J., Rusk, B., Hu, Y., & Blake, K. (2019). Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District. American Mineralogist, 104(1), 118–129. https://doi.org/10.2138/am-2019-6466
  • Chesnokov, B., Kotrly, M., & Nisanbajev, T. (1998). Brennende abraumhalden und aufschlüsse im Tscheljabinsker kohlenbecken – eine reiche mineralienküche. Mineralien-Welt, 9(3), 54–63.
  • Cochrane, G. W., & Bowen, K. G. (1971). Tin deposits of Victoria (pp. 1–72). Geological Survey of Victoria, Bulletin No. 60. Victorian Department of Mines.
  • Darwin, C. R. (1857). Letter no. 2130. https://www.darwinproject.ac.uk/letter/DCP-LETT-2130.xml
  • Deslattes, R. D., Kessler, E. G., Indelicato, P., Billy, L. d., Lindroth, E., & Anton, J. (2003). X-ray transition energies: New approach to a comprehensive evaluation. Reviews of Modern Physics, 75(1), 35–99. https://doi.org/10.1103/RevModPhys.75.35
  • Dhage, S. R., Samuel, V., Pasricha, R., & Ravi, V. (2006). Studies on SnO2–ZrO2 solid solution. Ceramics International, 32(8), 939–941. https://doi.org/10.1016/j.ceramint.2005.06.012
  • Dohmen, R., Faak, K., & Blundy, J. D. (2017). Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes. Reviews in Mineralogy and Geochemistry, 83(1), 535–575. https://doi.org/10.2138/rmg.2017.83.16
  • Donovan, J. J. (2018). CalcImage (Version 12.3.7). Probe Software, Inc.
  • Duc-Tin, Q., Audétat, A., & Keppler, H. (2007). Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 °C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 71(13), 3323–3335. https://doi.org/10.1016/j.gca.2007.04.022
  • Dunn, E. J., & Mahony, D. J. (1913). The Woolshed Valley, Beechworth (pp. 1–72). Geological Survey of Victoria, Bulletin No. 25. Victorian Department of Mines.
  • Dusausoy, Y., Ruck, R., & Gaite, J. M. (1988). Study of the symmetry of Fe3+ sites in SnO2 by electron paramagnetic resonance. Physics and Chemistry of Minerals, 15(3), 300–303. https://doi.org/10.1007/BF00307520
  • Ercit, T. S., Wise, M. A., & Cerny, P. (1995). Compositional and structural systematics of the columbite group. American Mineralogist, 80(5-6), 613–619. https://doi.org/10.2138/am-1995-5-619
  • Falster, A. U., Simmons, W. B., Webber, K. L., Dallaire, D. A., Nizamoff, J. W., & Sprague, R. A. (2019). The Emmons pegmatite, Greenwood, Oxford County, Maine. Rocks & Minerals, 94(6), 498–519. https://doi.org/10.1080/00357529.2019.1641021
  • Farmer, C. B., Searl, A., & Halls, C. (1991). Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty Mine, Cornwall, England. Mineralogical Magazine, 55(380), 447–458. https://doi.org/10.1180/minmag.1991.055.380.14
  • Galliski, M. A., Marquez-Zavalia, M. F., Cerny, P., Martinez, V. A., & Chapman, R. (2008). The Ta–Nb–Sn–Ti oxide-mineral paragenesis from La Viquita, a spodumene-bearing rare-element granitic pegmatite, San Luis, Argentina. The Canadian Mineralogist, 46(2), 379–393. https://doi.org/10.3749/canmin.46.2.379
  • Groves, D. I., Cocker, J. D., & Jennings, D. (1977). The Blue Tier Batholith. Geological Survey of Tasmania, Bulletin No. 55. Tasmania Department of Mines.
  • Grundmann, G., & Morteani, G. (1998). Alexandrite, emerald, ruby, sapphire and topaz in a biotite–phlogopite fels from Poona, Cue District, Western Australia. Australian Gemmologist, 20, 159–167.
  • Guo, J., Zhang, R., Li, C., Sun, W., Hu, Y., Kang, D., & Wu, J. (2018). Genesis of the Gaosong Sn–Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U–Pb dating and trace element fingerprinting. Ore Geology Reviews, 92, 627–642. https://doi.org/10.1016/j.oregeorev.2017.11.033
  • Guo, J., Zhang, R., Sun, W., Ling, M., Hu, Y., Wu, K., Luo, M., & Zhang, L. (2018). Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U–Pb ages and trace element compositions. Ore Geology Reviews, 95, 863–879. https://doi.org/10.1016/j.oregeorev.2018.03.023
  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522. https://doi.org/10.1016/j.oregeorev.2015.12.012
  • Hall, M. R. (1968). An electron microprobe study of luminescence centers in cassiterite [Master’s thesis]. Virginia Polytechnic Institute.
  • Hall, M. R., & Ribbe, P. H. (1971). An electron microprobe study of luminescence centers in cassiterite. American Mineralogist, 56(1-2), 31–45.
  • Halley, S. W., & Walshe, J. L. (1995). A reexamination of the Mount Bischoff cassiterite sulfide skarn, western Tasmania. Economic Geology, 90(6), 1676–1693. https://doi.org/10.2113/gsecongeo.90.6.1676
  • Hamilton, N. (2017). Ggtern: An extension to ‘ggplot2’, for the creation of ternary diagrams. https://CRAN.R-project.org/package=ggtern
  • Heinrich, C. A. (1990). The chemistry of hydrothermal tin(–tungsten) ore deposition. Economic Geology, 85(3), 457–481. https://doi.org/10.2113/gsecongeo.85.3.457
  • Hennigh, Q., & Hutchinson, R. W. (1999). Cassiterite at Kidd Creek: An example of volcanogenic massive sulfide-hosted tin mineralization. In M. D. Hannington & C. T. Barrie (Eds.), The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada, Monograph Series 10. Society of Economic Geologists. https://doi.org/10.5382/Mono.10.17
  • Hong, W., Cooke, D. R., Zhang, L., Fox, N., & Thompson, J. (2021). The formation of magmatic-hydrothermal features in Sn-mineralized and barren Tasmanian intrusions, southeast Australia: Insights from quartz textures, trace elements, and microthermometry. Economic Geology, 116(8), 1917–1948. https://doi.org/10.5382/econgeo.4853
  • Hutchinson, R. W. (1982). Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, Western Tasmania. Economic Geology, 77(1), 199–202. https://doi.org/10.2113/gsecongeo.77.1.199
  • Ishihara, S. (1979). Lateral variation of magnetic susceptibility of the Japanese granitoids. The Journal of the Geological Society of Japan, 85(8), 509–523. https://doi.org/10.5575/geosoc.85.509
  • Izoret, L., Marnier, G., & Dusausoy, Y. (1985). Caracterisation cristallochimique de la cassiterite des gisements d’etain et de tungstene de Galice, Espagne. The Canadian Mineralogist, 23(2), 221–231.
  • Jacobson, M. I., Calderwood, M. A., & Grguric, B. A. (2007). Guidebook to the pegmatites of Western Australia. Hesperian Press.
  • Jambor, J. L., Pertsev, N. N., & Roberts, A. C. (1995). New mineral names. American Mineralogist, 80(7-8), 845–850.
  • Keid, H. G. W. (1951). Memorandum—investigation lease no. 31M/50 Coles Bay [MRT document UR1951 070 73]. Mineral Resources Tasmania.
  • Kelly, W. C., & Rye, R. O. (1979). Geologic, fluid inclusion, and stable isotope studies of the tin–tungsten deposits of Panasqueira, Portugal. Economic Geology, 74(8), 1721–1822. https://doi.org/10.2113/gsecongeo.74.8.1721
  • Kendall-Langley, L. A., Kemp, A. I. S., Grigson, J. L., & Hammerli, J. (2020). U–Pb and reconnaissance Lu–Hf isotope analysis of cassiterite and columbite group minerals from Archean Li–Cs–Ta type pegmatites of Western Australia. Lithos, 352-353, 105231. https://doi.org/10.1016/j.lithos.2019.105231
  • Lenharo, S. L. R., Moura, M. A., & Botelho, N. F. (2002). Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: Examples from Pitinga and Goiás, Brazil. Precambrian Research, 119(1-4), 277–299. https://doi.org/10.1016/s0301-9268(02)00126-2
  • Linnen, R. L., Pichavant, M., Holtz, F., & Burgess, S. (1995). The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochimica et Cosmochimica Acta, 59(8), 1579–1588. https://doi.org/10.1016/0016-7037(95)00064-7
  • Liu, Y. P., Li, Z. X., Li, H. M., Guo, L. G., Xu, W., Ye, L., Li, C. Y., & Pi, D. H. (2007). U–Pb geochronology of cassiterite and zircon from the Dulong Sn–Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan province, China. Acta Petrologica Sinica, 23, 967–976.
  • London, D. (2014). A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187, 74–104. https://doi.org/10.1016/j.lithos.2013.10.025
  • Losos, Z., & Beran, A. (2004). OH defects in cassiterite. Mineralogy and Petrology, 81(3-4), 219–234. https://doi.org/10.1007/s00710-004-0040-x
  • Lufkin, J. L. (1976). Oxide minerals in miarolitic rhyolite, Black Range, New Mexico. American Mineralogist, 61(5-6), 425–430.
  • Lufkin, J. L. (1977). Chemistry and mineralogy of wood-tin, Black Range, New Mexico. American Mineralogist, 62(1-2), 100–106.
  • Magnéli, A., Andersson, G., Blomberg, B., & Kihlborg, L. (1952). Identification of molybdenum and tungsten oxides by x-ray powder patterns. Analytical Chemistry, 24(12), 1998–2000. https://doi.org/10.1021/ac60072a039
  • Magnéli, A., Andersson, G., Sundkvist, G., & Sundkvist, G. (1955). On the MoO2 structure type. Acta Chemica Scandinavica, 9(1), 1378–1381. https://doi.org/10.3891/acta.chem.scand.09-1378
  • Maldener, J., Rauch, F., Gavranic, M., & Beran, A. (2001). OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy. Mineralogy and Petrology, 71(1-2), 21–29. https://doi.org/10.1007/s007100170043
  • Marshall, D., Downes, P., Ellis, S., Greene, R., Loughrey, L., & Jones, P. (2016). Pressure-temperature-fluid constraints for the Poona Emerald Deposits, Western Australia: Fluid inclusion and stable isotope studies. Minerals, 6(4), 130. https://doi.org/10.3390/min6040130
  • Masau, M., Cerny, P., & Chapman, R. (2000). Exsolution of zirconian–hafnian wodginite from manganoan–tantalian cassiterite, Annie Claim #3 Granitic Pegmatite, Southeastern Manitoba, Canada. The Canadian Mineralogist, 38(3), 685–694. https://doi.org/10.2113/gscanmin.38.3.685
  • Matjuschkin, V., Blundy, J. D., & Brooker, R. A. (2016). The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contributions to Mineralogy and Petrology, 171(7), Article 66. https://doi.org/10.1007/s00410-016-1274-4
  • Meinert, L. D., Dipple, G. M., & Nicolescu, S. (2005). World skarn deposits. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Eds.), Economic Geology, 100th Anniversary Volume (pp. 299–366). Society of Economic Geologists.
  • Mercer, C. N., Reed, M. H., & Mercer, C. M. (2015). Time scales of porphyry Cu deposit formation: Insights from titanium diffusion in quartz. Economic Geology, 110(3), 587–602. https://doi.org/10.2113/econgeo.110.3.587
  • Möller, P., Dulski, P., Szacki, W., Malow, G., & Riedel, E. (1988). Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochimica et Cosmochimica Acta, 52(6), 1497–1503. https://doi.org/10.1016/0016-7037(88)90220-7
  • Moore, F., & Howie, R. A. (1979). Geochemistry of some Cornubian cassiterites. Mineralium Deposita, 14(1), 103–107. https://doi.org/10.1007/BF00201869
  • Moscati, R. J., & Neymark, L. A. (2020). U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: Direct dating of cassiterite by in situ LA-ICPMS. Mineralium Deposita, 55(1), 1–20. https://doi.org/10.1007/s00126-019-00870-y
  • Naidu, H. P., & Virkar, A. V. (1998). Low-temperature TiO2–SnO2 phase diagram using the molten-salt method. Journal of the American Ceramic Society, 81(8), 2176–2180. https://doi.org/10.1111/j.1151-2916.1998.tb02603.x
  • Nambaje, C., Eggins, S. M., Yaxley, G. M., & Sajeev, K. (2020). Micro-characterisation of cassiterite by geology, texture and zonation: A case study of the Karagwe Ankole belt, Rwanda. Ore Geology Reviews, 124, 103609. https://doi.org/10.1016/j.oregeorev.2020.103609
  • Neiva, A. M. R. (1996). Geochemistry of cassiterite and its inclusions and exsolution products from tin and tungsten deposits in Portugal. The Canadian Mineralogist, 34(4), 745–768.
  • Neiva, A. M. R. (2008). Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal. Ore Geology Reviews, 33(3-4), 221–238. https://doi.org/10.1016/j.oregeorev.2006.05.013
  • Newbury, D. E. (2009). Mistakes encountered during automatic peak identification of minor and trace constituents in electron-excited energy dispersive X-ray microanalysis. Scanning, 31(3), 91–101. https://doi.org/10.1002/sca.20151
  • Neymark, L. A., Holm-Denoma, C. S., & Moscati, R. J. (2018). In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology, 483, 410–425. https://doi.org/10.1016/j.chemgeo.2018.03.008
  • Okada, M., Ono, K., Yoshio, S., Fukuyama, H., & Adachi, K. (2019). Oxygen vacancies and pseudo Jahn-Teller destabilization in cesium-doped hexagonal tungsten bronzes. Journal of the American Ceramic Society, 102(9), 5386–5400. https://doi.org/10.1111/jace.16414
  • Pal, D. C., Mishra, B., & Bernhardt, H.-J. (2007). Mineralogy and geochemistry of pegmatite-hosted Sn-, Ta–Nb-, and Zr–Hf-bearing minerals from the southeastern part of the Bastar-Malkangiri pegmatite belt, Central India. Ore Geology Reviews, 30(1), 30–55. https://doi.org/10.1016/j.oregeorev.2005.10.004
  • Partington, G. A., McNaughton, N. J., & Williams, I. S. (1995). A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Economic Geology, 90(3), 616–635. https://doi.org/10.2113/gsecongeo.90.3.616
  • Pasero, M. (2020). The new IMA list of minerals, November 2020. IMA CNMNC. http://cnmnc.main.jp/
  • Pavlova, G. G., Palessky, S. V., Borisenko, A. S., Vladimirov, A. G., Seifert, T., & Phan, L. A. (2015). Indium in cassiterite and ores of tin deposits. Ore Geology Reviews, 66, 99–113. https://doi.org/10.1016/j.oregeorev.2014.10.009
  • Pekov, I. V., Koshlyakova, N. N., Zubkova, N. V., Lykova, I. S., Britvin, S. N., Yapaskurt, V. O., Agakhanov, A. A., Shchipalkina, N. V., Turchkova, A. G., & Sidorov, E. G. (2018). Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30(2), 305–322. https://doi.org/10.1127/ejm/2018/0030-2718
  • Piranjo, F. (2009). Hydrothermal processes and mineral systems. Springer.
  • Reid, A. M., & Henderson, Q. J. (1928). Blue Tier Tin Field. Geological Survey of Tasmania, Bulletin No. 38. Tasmania Department of Mines. Hobart.
  • Ritchie, N. W. M. (2009). Spectrum simulation in DTSA-II. Microscopy and Microanalysis, 15(5), 454–468. https://doi.org/10.1017/s1431927609990407
  • Ritchie, N. W. M. (2019). DTSA-II (Lorentz). NIST. https://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html
  • Rogers, D. B., Shannon, R. D., Sleight, A. W., & Gillson, J. L. (1969). Crystal chemistry of metal dioxides with rutile-related structures. Inorganic Chemistry, 8(4), 841–849. https://doi.org/10.1021/ic50074a029
  • Ruck, R., Dusausoy, Y., Trung, C. N., Gaite, J.-M., & Murciego, A. (1989). Powder EPR study of natural cassiterites and synthetic SnO2 doped with Fe, Ti, Na and Nb. European Journal of Mineralogy, 1(3), 343–352. https://doi.org/10.1127/ejm/1/3/0343
  • Schmidt, C. (2018). Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica et Cosmochimica Acta, 220, 499–511. https://doi.org/10.1016/j.gca.2017.10.011
  • Schönberg, N., Overend, W. G., Munthe-Kaas, A., & Sörensen, N. A. (1954). An X-ray investigation of the tantalum-oxygen system. Acta Chemica Scandinavica, 8, 240–245. https://doi.org/10.3891/acta.chem.scand.08-0240
  • Serranti, S., Ferrini, V., Masi, U., & Cabri, L. J. (2002). Trace-element distribution in cassiterite and sulfides from Rubane and massive ores of the Corvo deposit, Portugal. The Canadian Mineralogist, 40(3), 815–835. https://doi.org/10.2113/gscanmin.40.3.815
  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. https://doi.org/10.1107/S0567739476001551
  • Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25(5), 925–946. https://doi.org/10.1107/S0567740869003220
  • Sharko, E. D. (1971). Nature and properties of varlamoffite (oxidation products of stannite). International Geology Review, 13(4), 603–614. https://doi.org/10.1080/00206817109475474
  • Summers, K. W. A. (1957). The mineral deposits of West Arm, Bynoe Harbour and Bamboo Creek Field, Northern Territory (BMR Record 1957/68). Bureau of Mineral Resources Geology and Geophysics.
  • Sweetapple, M. T., & Collins, P. L. F. (2002). Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Economic Geology, 97(4), 873–895. https://doi.org/10.2113/gsecongeo.97.4.873
  • Swope, R. J., Smyth, J. R., & Larson, A. C. (1995). H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. American Mineralogist, 80(5-6), 448–453. https://doi.org/10.2138/am-1995-5-604
  • Taylor, R. G. (1979). Geology of tin deposits. Elsevier Science.
  • Thomas, J. B., Bruce Watson, E., Spear, F. S., Shemella, P. T., Nayak, S. K., & Lanzirotti, A. (2010). TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160(5), 743–759. https://doi.org/10.1007/s00410-010-0505-3
  • Thomas, R., & Davidson, P. (2016). Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72, 1088–1101. https://doi.org/10.1016/j.oregeorev.2015.10.004
  • Tindle, A. G., & Breaks, F. W. (1998). Oxide minerals of the separation rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36(2), 609–635.
  • Twelvetrees, W. H. (1901). Report of the coalfield of Llandaff, the Denison and Douglas Rivers, on deposits of tin ore on Schouten Main, and on outcrops of quartz near Buckland (Tech. rep.). Tasmanian Government Geologist’s Office.
  • Vonopartis, L., Nex, P., Kinnaird, J., & Robb, L. (2020). Evaluating the changes from endogranitic magmatic to magmatic-hydrothermal mineralization: The Zaaiplaats tin granites, Bushveld Igneous Complex, South Africa. Minerals, 10(4), 379. https://doi.org/10.3390/min10040379
  • Walshe, J. L., Halley, S. W., Anderson, J. A., & Harrold, B. P. (1996). The interplay of groundwater and magmatic fluids in the formation of the cassiterite-sulfide deposits of western Tasmania. Ore Geology Reviews, 10(3-6), 367–387. https://doi.org/10.1016/0169-1368(95)00031-3
  • Walshe, J. L., Solomon, M., Whitford, D. J., Sun, S.-S., & Foden, J. D. (2011). The role of the mantle in the genesis of tin deposits and tin provinces of eastern Australia. Economic Geology, 106(2), 297–305. https://doi.org/10.2113/econgeo.106.2.297
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4
  • Wood, B. J., & Blundy, J. D. (2001). The effect of cation charge on crystal–melt partitioning of trace elements. Earth and Planetary Science Letters, 188(1-2), 59–71. https://doi.org/10.1016/s0012-821x(01)00294-1