102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation, Characterization and Therapeutic Evaluation of Lactic Acid Bacteria from Traditional and Non-Traditional Sources

, , , , , & show all

References

  • Al-Dhaheri, A. S., R. Al-Hemeiri, J. Kizhakkayil, A. Al-Nabulsi, A. Abushelaibi, N. P. Shah, and M. Ayyash. 2017. Health-promoting benefits of low-fat akawi cheese made by exopolysaccharide-producing probiotic lactobacillus plantarum isolated from camel milk. J. Dairy Sci. 100 (10):7771–7779. doi:10.3168/jds.2017-12761.
  • Álvarez-Cisneros, Y., and E. Ponce-Alquicira. 2019. Antibiotic resistance in lactic acid bacteria. Antimicrob. Resist. - A Global Threat. doi:10.5772/intechopen.80624.
  • Baldi B. 2013. Comparative insight of regulatory guidelines for probiotics in USA, India and Malaysia: A critical review. Int. J. Biotechnol. Wellness Ind. 51–64. doi:10.6000/1927-3037.2013.02.02.1.
  • Barzegari, A., K. Kheyrolahzadeh, S. M. Hosseiniyan Khatibi, S. Sharifi, M. Y. Memar, and S. Zununi Vahed. 2020. The battle of probiotics and their derivatives against biofilms. Infect Drug Resist. 13:659–672. doi:10.2147/IDR.S232982.
  • Binda, S., C. Hill, E. Johansen, D. Obis, B. Pot, M. E. Sanders, A. Tremblay, and A. C. Ouwehand. 2020. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front. Microbiol. 11 (July):1–9. doi:10.3389/fmicb.2020.01662.
  • Chen, Y., F. Yanagida, and T. Shinohara. 2005. Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett. Appl. Microbiol. 40 (3):195–200. doi:10.1111/j.1472-765x.2005.01653.x.
  • d’Ettorre, G., G. Ceccarelli, N. Giustini, S. Serafino, N. Calantone, G. De Girolamo, L. Bianchi, V. Bellelli, T. Ascoli-Bartoli, S. Marcellini, et al. 2015. Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: Results of the “probio-HIV” clinical trial. PLoS One. 10 (9):e0137200. doi:10.1371/journal.pone.0137200.
  • Duche, R. T., A. Singh, A. G. Wandhare, V. Sangwan, M. K. Sihag, T. N. Nwagu, H. Panwar, and L. I. Ezeogu. 2023. Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiol. 23 (1). doi: 10.1186/s12866-023-02883-0.
  • Dudek-Wicher, R., A. Junka, J. Paleczny, and M. Bartoszewicz. 2020. Clinical trials of probiotic strains in selected disease entities. Int. J.Microbiol. 2020:1–8. doi:10.1155/2020/8854119.
  • EFSA. 2005. Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J. 3 (6):226. doi:10.2903/j.efsa.2005.226.
  • FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Paris: FAO.
  • Fijan, S. 2014. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res 11 (5):4745–4767. doi:10.3390/ijerph110504745.
  • Garcia-Gonzalez, N., R. Prete, N. Battista, and A. Corsetti. 2018. Adhesion properties of food-associated Lactobacillus plantarum strains on human intestinal epithelial cells and modulation of IL-8 release. Front. Microbiol. 9. doi:10.3389/fmicb.2018.02392.
  • Gueimonde, M., B. Sánchez, C. G. de Los Reyes-Gavilán, and A. Margolles. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4 (JUL):1–6. doi:10.3389/fmicb.2013.00202.
  • Hamet, M., A. Londero, M. Medrano, E. Vercammen, K. Van Hoorde, G. Garrote, G. Huys, P. Vandamme, and A. Abraham. 2013. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol. 36 (2):327–334. doi:10.1016/j.fm.2013.06.022.
  • Hoffmann, A., P. Kleniewska, and R. Pawliczak. 2019. Antioxidative activity of probiotics. Arch. Med. Sci. 17 (3):792–804. doi:10.5114/aoms.2019.89894.
  • Jatmiko, Y. D., G. S. Howarth, and M. D. Barton. 2017. Assessment of probiotic properties of lactic acid bacteria isolated from Indonesian naturally fermented milk. In AIP Conference Proceedings. doi:10.1063/1.5012732.
  • Jitpakdee, J., D. Kantachote, H. Kanzaki, and T. Nitoda. 2021. Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. LWT 135:110061. doi:10.1016/j.lwt.2020.110061.
  • Jobby, R., Y. Flora, A. Bora, P. Jha, H. Kawalkar, and N. Desai. 2020. Exploring probiotic activity of Lactobacillus sp. isolated from indigenous breeds of cattle milk and fecal samples in Bhatan Village, MH., IN. Curr. Microbiol. 77 (7):1184–1190. doi:10.1007/s00284-020-01910-x.
  • Juárez Tomás, M. S., B. Wiese, and M. E. Nader-Macías. 2005. Effects of culture conditions on the growth and auto-aggregation ability of vaginal Lactobacillus johnsonii CRL 1294. J. Appl. Microbiol. 99 (6):1383–1391. doi:10.1111/j.1365-2672.2005.02726.x.
  • Junnarkar, M. V., P. M. Thakare, P. P. Yewale, A. Rahman, J. Jass, A. Mandal, and N. N. Nawani. 2018. Evaluation of probiotic potential of lactic acid bacteria isolated from different sources in Western India. Food Biotechnol. 32 (2):112–129. doi:10.1080/08905436.2018.1443825.
  • Kechagia, M., D. Basoulis, S. Konstantopoulou, D. Dimitriadi, K. Gyftopoulou, N. Skarmoutsou, and E. M. Fakiri. 2013. Health benefits of probiotics: A review. ISRN Nutr. 2013:1–7. doi:10.5402/2013/481651.
  • Khanna, S., M. Bishnoi, K. K. Kondepudi, and G. Shukla. 2020. Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages. World J. Microbiol. Biotechnol. 36 (5):74. doi:10.1007/s11274-020-02852-z.
  • Kim, H., J. Kim, Y. Kim, Y. Jeong, J. Kim, N. Paek, and C. Kang. 2020. Antioxidant and probiotic properties of lactobacilli and bifidobacteria of human origins. Biotechnol. Bioprocess Eng. 25 (3):421–430. doi:10.1007/s12257-020-0147-x.
  • Kocsis, T., B. Molnár, D. Németh, P. Hegyi, Z. Szakács, A. Bálint, A. Garami, A. Soós, K. Márta, and M. Solymár. 2020. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: A meta-analysis of randomized clinical trials. Sci. Rep. 10 (1):11787. doi:10.1038/s41598-020-68440-1.
  • Krausova, G., I. Hyrslova, and I. Hynstova. 2019. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 5 (4):100. MDPI AG. doi:10.3390/fermentation5040100.
  • Kumara, S. S., A. Bashisht, G. Venkateswaran, P. Hariprasad, and D. Gayathri. 2019. Characterization of Novel Lactobacillus fermentum from curd samples of indigenous cows from Malnad Region, Karnataka, for their Aflatoxin B1 binding and probiotic properties. Probiotics Antimicrob. 11 (4):1100–1109. doi:10.1007/s12602-018-9479-7.
  • Kumar, M., R. Nagpal, R. Kumar, R. Hemalatha, V. Verma, A. Kumar, C. Chakraborty, B. Singh, F. Marotta, S. Jain, et al. 2012. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res. 2012:1–14. doi:10.1155/2012/902917.
  • Lee, N. K., K. J. Han, S. H. Son, S. J. Eom, S. K. Lee, and H. D. Paik. 2015. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. Food Sci. Technol. 64 (2):1036–1041. doi:10.1016/j.lwt.2015.07.019.
  • Liu, G., J. Yin, B. Han, H. W. Barkema, M. Shahid, J. De Buck, E. R. Cobo, J. P. Kastelic, and J. Gao. 2019. Adherent/invasive capacities of bovine-associated Aerococcus viridans contribute to pathogenesis of acute mastitis in a murine model. Vet. Microbiol. 230:202–211. doi:10.1016/j.vetmic.2019.02.016.
  • Lozo, J., L. Topisirovic, and M. Kojic. 2021. Natural bacterial isolates as an inexhaustible source of new bacteriocins. Appl. Microbiol. Biotechnol. 105 (2):477–492. doi:10.1007/s00253-020-11063-3.
  • Lu, K., S. Dong, X. Wu, R. Jin, and H. Chen. 2021. Probiotics in cancer. Front Oncol. 11. doi:10.3389/fonc.2021.638148.
  • Mallappa, R. H., D. K. Singh, N. Rokana, D. Pradhan, V. K. Batish, and S. Grover. 2019. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. LWT 105 (February):272–281. doi:10.1016/j.lwt.2019.02.002.
  • McFarland, L. 1994. A randomized placebo-controlled trial of saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271 (24):1913. doi:10.1001/jama.1994.03510480037031.
  • Michaylova, M., S. Minkova, K. Kimura, T. Sasaki, and K. Isawa. 2007. Isolation and characterization of lactobacillus delbrueckii ssp.Bulgaricus and streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol. Lett. 269 (1):160–169. doi:10.1111/j.1574-6968.2007.00631.x.
  • Miljkovic, M., I. Strahinic, M. Tolinacki, M. Zivkovic, S. Kojic, N. Golic, M. Kojic, and J. L. Balcazar. 2015. AggLb is the largest cell-aggregation factor from Lactobacillus paracasei subsp. paracasei BGNJ1-64, functions in collagen adhesion, and pathogen exclusion in vitro. PLoS One. 10 (5):e0126387. doi:10.1371/journal.pone.0126387.
  • Monteagudo-Mera, A., R. A. Rastall, G. R. Gibson, D. Charalampopoulos, and A. Chatzifragkou. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103 (16):6463–6472. doi:10.1007/s00253-019-09978-7.
  • Nazir, Y., S. A. Hussain, A. Abdul Hamid, and Y. Song. 2018. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Res Int. doi:10.1155/2018/3428437.
  • Nguyen, T. D. T., J. H. Kang, and M. S. Lee. 2007. Characterization of lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113 (3):358–361. doi:10.1016/j.ijfoodmicro.2006.08.015.
  • Oh, N. S., J. Y. Joung, J. Y. Lee, Y. Kim, and C. Forestier. 2018. Probiotic and anti-inflammatory potential of lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLoS One. 13 (2):1–15. doi:10.1371/journal.pone.0192021.
  • Park, D. W., H. S. Lee, M. S. Shim, K. J. Yum, and J. T. Seo. 2020. Do Kimchi and Cheonggukjang probiotics as a functional food improve androgenetic alopecia? A clinical pilot study. World J. Men’s Health 38 (1):95–102. doi:10.5534/wjmh.180119.
  • Patel, R., and M. Underwood. 2018. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27 (1):39–46. doi:10.1053/j.sempedsurg.2017.11.008.
  • Perez, P. F., Y. Minnaard, E. A. Disalvo, and G. L. De Antoni. 1998. Surface properties of bifidobacteria strains of human origin. Appl. Environ. Microb. 64 (1):21–26. doi:10.1128/AEM.64.1.21-26.1998.
  • Ramalho, J. B., M. B. Soares, C. C. Spiazzi, D. F. Bicca, V. M. Soares, J. G. Pereira, W. P. da Silva, C. P. Sehn, and F. Cibin. 2019. In vitro probiotic and antioxidant potential of Lactococcus lactis subsp. cremoris LL95 and its effect in mice behaviour. Nutr 11 (4):901. doi:10.3390/nu11040901.
  • Ramos, C. L., L. Thorsen, R. F. Schwan, and L. Jespersen. 2013. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36 (1):22–29. doi:10.1016/j.fm.2013.03.010.
  • Ren, D., J. Zhu, S. Gong, H. Liu, and H. Yu. 2018. Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. Biomed. Res. Int. 2018:1–9. doi:10.1155/2018/5416725.
  • Reuben, R. C., P. C. Roy, S. L. Sarkar, R. U. Alam, and I. K. Jahid. 2019. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 19 (1):253. doi:10.1186/s12866-019-1626-0.
  • Rodgers, B., K. Kirley, A. Mounsey, and B. Ewigman. 2013. Prescribing an antibiotic? Pair it with probiotics. J. Family Pract. 62 (3):148–150.
  • Rodrigues, M. X., S. F. Lima, C. H. Higgins, S. G. Canniatti-Brazaca, and R. C. Bicalho. 2016. The Lactococcus genus as a potential emerging mastitis pathogen group: A report on an outbreak investigation. J. Dairy Sci. 99 (12):9864–9874. doi:10.3168/jds.2016-11143.
  • Ruiz, L., P. Ruas-Madiedo, M. Gueimonde, C. G. De Los Reyes-Gavilán, A. Margolles, and B. Sánchez. 2011. How do Bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 6 (3):307–318. doi:10.1007/s12263-010-0207-5.
  • Sadeghi-Aliabadi, H., F. Mohammadi, H. Fazeli, and M. Mirlohi. 2014. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J. Basic Med. Sci. 17 (10):815–819. doi:10.22038/ijbms.2014.3459.
  • Shehata, M. G., S. A. El Sohaimy, M. A. El-Sahn, and M. M. Youssef. 2016. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann. Agri. Sci. 61 (1):65–75. doi:10.1016/j.aoas.2016.03.001.
  • Shi, L. H., K. Balakrishnan, K. Thiagarajah, N. I. Mohd Ismail, and O. S. Yin. 2016. Beneficial properties of probiotics. Trop. Life Sci. Res. 27 (2):73–90. doi:10.21315/tlsr2016.27.2.6.
  • Shivangi, S., P. B. Devi, K. Ragul, and P. H. Shetty. 2020. Probiotic potential of Bacillus strains isolated from an acidic fermented food idli. Probiotics Antimicrob. 12 (4):1502–1513. doi:10.1007/s12602-020-09650-x.
  • Shobharani, P., and R. Agrawal. 2011. A potent probiotic strain from cheddar cheese. Indian J. Microbiol. 51 (3):251–258. doi:10.1007/s12088-011-0072-y.
  • Silva, D., J. Sardi, N. Pitangui, S. Roque, A. Silva, and P. Rosalen. 2020. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J. Func. Foods 73:104080. doi:10.1016/j.jff.2020.104080.
  • Sivamaruthi, B., M. Prasanth, P. Kesika, and C. Chaiyasut. 2021. Probiotics in human mental health and diseases - A minireview. Trop. J. Pharm. Res. 18 (4):889–895. doi:10.4314/tjpr.v18i4.29.
  • Śliżewska, K., P. Markowiak-Kopeć, and W. Śliżewska. 2020. The role of probiotics in cancer prevention. Cancers 13 (1):20. doi:10.3390/cancers13010020.
  • Somashekaraiah, R., B. Shruthi, B. V. Deepthi, and M. Y. Sreenivasa. 2019. Probiotic properties of lactic acid bacteria isolated from neera: A naturally fermenting coconut palm nectar. Front. Microbiol. 10 (JUN):1–11. doi:10.3389/fmicb.2019.01382.
  • Sornplang, P., and S. Piyadeatsoontorn. 2016. Probiotic isolates from unconventional sources: A review. J. Anim. Sci. Technol. 58 (1):1–11. doi:10.1186/s40781-016-0108-2.
  • Syngai, G., R. Gopi, R. Bharali, S. Dey, G. Lakshmanan, and G. Ahmed. 2015. Probiotics - The versatile functional food ingredients. J. Food Sci. Technol. 53 (2):921–933. doi:10.1007/s13197-015-2011-0.
  • Teneva-Angelova, T., and D. Beshkova. 2016. Non-traditional sources for isolation of lactic acid bacteria. Ann. Microbiol. 66 (1):449–459. doi:10.1007/s13213-015-1127-9.
  • Tomaro-Duchesneau, C., M. L. Jones, D. Shah, P. Jain, S. Saha, and S. Prakash. 2014. Cholesterol assimilation by Lactobacillus probiotic bacteria: An in vitro investigation. Biomed. Res. Int. 2014:1–9. doi:10.1155/2014/380316.
  • Topisirovic, L., M. Kojic, D. Fira, N. Golic, I. Strahinic, and J. Lozo. 2006. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int. J. Food Microbiol. 112 (3):230–235. doi:10.1016/j.ijfoodmicro.2006.04.009.
  • Vasudevan, L., J. V, S. M, and C. TS. 2021. Mucosa-adherent Pediococcus pentosaceus I44 isolated from healthy human and effect of oleic acid on its probiotic properties. Curr. Res. Microb. Sci. 2:100058. doi:10.1016/j.crmicr.2021.100058.
  • Veiga, P., J. Suez, M. Derrien, and E. Elinav. 2020. Moving from probiotics to precision probiotics. Nat. Microbiol. 5 (7):878–880. doi:10.1038/s41564-020-0721-1.
  • Verón, H., H. Di Risio, M. Isla, and S. Torres. 2017. Isolation and selection of potential probiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. LWT 84:231–240. doi:10.1016/j.lwt.2017.05.058.
  • Vidhyasagar, V., and K. Jeevaratnam. 2013. Evaluation of Pediococcus pentosaceus strains isolated from idly batter for probiotic properties in vitro. J. Funct. Foods 5 (1):235–243. doi:10.1016/j.jff.2012.10.012.
  • Vijaya Kumar, B., S. Vijayendra, and O. Reddy. 2015. Trends in dairy and non-dairy probiotic products - A review. J. Food Sci. Technol. 52 (10):6112–6124. doi:10.1007/s13197-015-1795-2.
  • Vijayalakshmi, S., D. E. Adeyemi, I. Y. Choi, G. Sultan, I. H. Madar, and M.-K. Park. 2020. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. LWT 130:109617. doi:10.1016/j.lwt.2020.109617.
  • Vizoso Pinto, M. G., C. M. A. P. Franz, U. Schillinger, and W. H. Holzapfel. 2006. Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109 (3):205–214. doi:10.1016/j.ijfoodmicro.2006.01.029.
  • Wang, Y., Y. Wu, Y. Wang, H. Xu, X. Mei, D. Yu, Y. Wang, and W. Li. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9 (5):521. doi:10.3390/nu9050521.
  • West, N., P. Horn, D. Pyne, V. Gebski, S. Lahtinen, and P. Fricker. 2014. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin. Nut. 33 (4):581–587. doi:10.1016/j.clnu.2013.10.002.
  • Wong, A., D. Y. S. Ngu, L. A. Dan, A. Ooi, and R. L. H. Lim. 2015. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr. J. 14 (1):12–17. doi:10.1186/s12937-015-0084-2.
  • Yadav, R., A. K. Puniya, and P. Shukla. 2016. Probiotic properties of lactobacillus plantarum RYPR1 from an indigenous fermented beverage Raabadi. Front. Microbiol. 7 (OCT):1–9. doi:10.3389/fmicb.2016.01683.
  • Zare, M. H., M. Mohkam, M. H. Morowvat, N. Nezafat, and Y. Ghasemi. 2015. Probiotic potential of five lactobacillus strains isolated from traditional Persian yoghurt in Fars Province, Iran: Viewing through the window of phylogenetics. Biosci. Biotechnol. Res. Asia. 12 (2):1265–1272. doi:10.13005/bbra/1780.
  • Zheng, Y., Y. Lu, J. Wang, L. Yang, C. Pan, Y. Huang, and J.-M. A. Lobaccaro. 2013. Probiotic properties of Lactobacillus strains isolated from Tibetan Kefir Grains. PLoS One. 8 (7):1–8. doi:10.1371/journal.pone.0069868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.