Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 3
249
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Evaluation of neural reflex activation as a potential mode of action for respiratory and cardiovascular effects of fine particulate matter

, , &
Pages 125-144 | Received 27 Oct 2023, Accepted 20 Feb 2024, Published online: 15 Mar 2024

References

  • Adriaensen D, Timmermans JP. 2011. Breath-taking complexity of vagal C-fibre nociceptors: implications for inflammatory pulmonary disease, dyspnoea and cough. J Physiol. 589(Pt. 1):3–4. doi:10.1113/jphysiol.2010.201434.
  • Andrè E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, et al. 2008. Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest. 118(7):2574–2582. doi:10.1172/JCI34886.
  • Barnes PJ. 1996. Neuroeffector mechanisms: the interface between inflammation and neuronal responses. J. Allergy Clin. Immunol. 98(5):S73–S83. doi:10.1016/S0091-6749(96)70020-9.
  • Baxter MD, Birrell MA, Belvisi MG. 2012. The role of transient receptor potential vanilloid 1 (TRPV1) in tobacco smoke induced airway inflammation. Am. J. Respir. Crit. Care Med. 185:A6410. Presented at the American Thoracic Society International Conference, San Francisco, CA, May 18–23. doi:10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A6410.
  • Bergren DR. 1985. Enhanced lung C-fiber responsiveness in sensitized adult guinea pigs exposed to chronic tobacco smoke. J Appl Physiol (1985). 91(4):1645–1654. doi:10.1152/jappl.2001.91.4.1645.
  • Bhatnagar A. 2022. Cardiovascular effects of particulate air pollution. Annu Rev Med. 73(1):393–406. doi:10.1146/annurev-med-042220-011549.
  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C. 2008. IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol. 38(2):87–96. doi:10.1080/10408440701749421.
  • Braun M, Koger F, Klingelhöfer D, Müller R, Groneberg D. 2019. Particulate matter emissions of four different cigarette types of one popular brand: influence of tobacco strength and additives. IJERPH. 16(2):263. doi:10.3390/ijerph16020263.
  • Canning BJ, Mori N, Mazzone SB. 2006. Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol. 152(3):223–242. doi:10.1016/j.resp.2006.03.001.
  • Cantero-Recasens G, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LA, Kauffmann F, Antó JM, Valverde MA. 2010. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem. 285(36):27532–27535. doi:10.1074/jbc.C110.159491.
  • Carll AP, Hazari MS, Perez CM, Krantz QT, King CJ, Haykal-Coates N, Cascio WE, Costa DL, Farraj AK. 2013. An autonomic link between inhaled diesel exhaust and impaired cardiac performance: insight from treadmill and dobutamine challenges in heart failure-prone rats. Toxicol Sci. 135(2):425–436. doi:10.1093/toxsci/kft155.
  • Deering-Rice CE, Romero EG, Shapiro D, Hughen RW, Light AR, Yost GS, Veranth JM, Reilly CA. 2011. Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Toxicol. 24(6):950–959. doi:10.1021/tx200123z.
  • Emmerechts J, Hoylaerts MF. 2012. The effect of air pollution on haemostasis. Hamostaseologie. 32(1):5–13. doi:10.5482/ha-1179.
  • Fowles J, Dybing E. 2003. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control. 12(4):424–430. doi:10.1136/tc.12.4.424.
  • Ghelfi E, Rhoden CR, Wellenius GA, Lawrence J, Gonzalez-Flecha B. 2008. Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated ambient particles are mediated by TRP-dependent pulmonary reflexes. Toxicol Sci. 102(2):328–336. doi:10.1093/toxsci/kfn005.
  • Gültekin F, Nazıroğlu M, Savaş HB, Çiğ B. 2018. Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis. 33(5):1761–1774. doi:10.1007/s11011-018-0289-0.
  • Halvani A, Tahghighi F, Nadooshan HH. 2012. Evaluation of correlation between airway and serum inflammatory markers in asthmatic patients. Lung India. 29(2):143–146. doi:10.4103/0970-2113.95317.
  • Hancox RJ, Poulton R, Greene JM, Filsell S, McLachlan CR, Rasmussen F, Taylor DR, Williams MJ, Williamson A, Sears MR. 2007. Systemic inflammation and lung function in young adults. Thorax. 62(12):1064–1068. doi:10.1136/thx.2006.076877.
  • Hazari MS, Haykal-Coates N, Winsett DW, Krantz QT, King C, Costa DL, Farraj AK. 2011. TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environ Health Perspect. 119(7):951–957. doi:10.1289/ehp.1003200.
  • Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. 2013. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 1(1):483–491. doi:10.1016/j.redox.2013.07.006.
  • Jahn HJ, Kraemer A, Chen XC, Chan CY, Engling G, Ward TJ. 2013. Ambient and personal PM2.5 exposure assessment in the Chinese megacity of Guangzhou. Atmos. Environ.74:402–411. 74:402–411. doi:10.1016/j.atmosenv.2013.04.011.
  • Lian Z, Qi H, Liu X, Zhang Y, Xu R, Yang X, Zeng Y, Li J. 2022. Ambient ozone, and urban PM2.5 co-exposure, aggravate allergic asthma via transient receptor potential vanilloid 1-mediated neurogenic inflammation. Ecotoxicol Environ Saf. 243:114000. doi:10.1016/j.ecoenv.2022.114000.
  • Libby P, Ridker PM, Maseri A. 2002. Inflammation and atherosclerosis. Circulation. 105(9):1135–1143. doi:10.1161/hc0902.104353.
  • Lin YS, Hsu CC, Bien MY, Hsu HC, Weng HT, Kou YR. 2010. Activations of TRPA1 and P2X receptors are important in ROS-mediated stimulation of capsaicin-sensitive lung vagal afferents by cigarette smoke in rats. J Appl Physiol (1985). 108(5):1293–1303. doi:10.1152/japplphysiol.01048.2009.
  • Lv H, Yue J, Chen Z, Chai S, Cao X, Zhan J, Ji Z, Zhang H, Dong R, Lai K. 2016. Effect of transient receptor potential vanilloid-1 on cough hypersensitivity induced by particulate matter 2.5. Life Sci. 151:157–166. doi:10.1016/j.lfs.2016.02.064.
  • Maricq MM. 2007. Chemical characterization of particulate emissions from diesel engines: a review. Aerosol Sci. 38:1079–1118.
  • Matran R, Alving K, Lundberg JM. 1990. Cigarette smoke, nicotine and capsaicin aerosol-induced vasodilatation in pig respiratory mucosa. Br J Pharmacol. 100(3):535–541. doi:10.1111/j.1476-5381.1990.tb15842.x.
  • McGuinness AJ, Sapey E. 2017. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med. 6(2):21. doi:10.3390/jcm6020021.
  • McQueen DS, Donaldson K, Bond SM, McNeilly JD, Newman S, Barton NJ, Duffin R. 2007. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation. Toxicol Appl Pharmacol. 219(1):62–71. doi:10.1016/j.taap.2006.11.034.
  • Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C. 2014b. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol. 34(1):1–18. doi:10.1002/jat.2949.
  • Meek ME, Palermo CM, Bachman AN, North CM, Lewis RJ. 2014a. Mode of action human relevance (species concordance) framework: evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J Appl Toxicol. 34(6):595–606. doi:10.1002/jat.2984.
  • Milici A, Talavera K. 2021. TRP channels as cellular targets of particulate matter. Int J Mol Sci. 22(5):2783. doi:10.3390/ijms22052783.
  • [NTP] National Toxicology Program . 2016. Tobacco-related exposures. In Report on carcinogens. 14th ed. US Dept. of Health and Human Services, Public Health Service, National Toxicology Program. p. 6. https://ntp.niehs.nih.gov/ntp/roc/content/profiles/tobaccorelatedexposures.pdf
  • Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, Valente AJ, Chandrasekar B. 2007. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem. 282(37):27229–27238. doi:10.1074/jbc.M703250200.
  • Perez CM, Hazari MS, Farraj AK. 2015. Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure. Cardiovasc Toxicol. 15(1):69–78. doi:10.1007/s12012-014-9272-0.
  • Prueitt RL, Cohen JM, Goodman JE. 2015. Evaluation of atherosclerosis as a potential mode of action for cardiovascular effects of particulate matter. Regul Toxicol Pharmacol. 73(Suppl. 2):S1–S15. doi:10.1016/j.yrtph.2015.09.034.
  • Prueitt RL, Li W, Edwards L, Zhou J, Goodman JE. 2021. Systematic review of the association between long-term exposure to fine particulate matter and mortality. Int J Environ Health Res. 32(8):1647–1685. doi:10.1080/09603123.2021.1901864.
  • Ris C. 2007. U.S. EPA health assessment for diesel engine exhaust: a review. Inhal Toxicol. 19 Suppl 1(sup1):229–239. doi:10.1080/08958370701497960.
  • Robertson S, Thomson AL, Carter R, Stott HR, Shaw CA, Hadoke PW, Newby DE, Miller MR, Gray GA. 2014. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and beta-1 adrenoreceptors. Part Fibre Toxicol. 11:12. doi:10.1186/1743-8977-11-12.
  • Robinson RK, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Shaffer MSP, Bonvini SJ, et al. 2018. Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol. 141(3):1074–1084.e9. doi:10.1016/j.jaci.2017.04.038.
  • Rogerio AP, Andrade EL, Calixto JB. 2011. C-fibers, but not the transient potential receptor vanilloid 1 (TRPV1), play a role in experimental allergic airway inflammation. Eur J Pharmacol. 662(1-3):55–62. doi:10.1016/j.ejphar.2011.04.027.
  • Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A. 2005. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med. 18(1):1–22. doi:10.1089/jam.2005.18.1.
  • Shannahan JH, Kodavanti UP, Brown JM. 2012. Manufactured and airborne nanoparticle cardiopulmonary interactions: A review of mechanisms and the possible contribution of mast cells. Inhal Toxicol. 24(5):320–339. doi:10.3109/08958378.2012.668229.
  • Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. 2020. Involvement of neural transient receptor potential channels in peripheral inflammation. Front Immunol. 11:590261. doi:10.3389/fimmu.2020.590261.
  • Sin DD, Man SF. 2003. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation. 107(11):1514–1519. doi:10.1161/01.cir.0000056767.69054.b3.
  • Southerland VA, Brauer M, Mohegh A, Hammer MS, van Donkelaar A, Martin RV, Apte JS, Anenberg SC. 2022. Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets. Lancet Planet Health. 6(2):e139–e146. doi:10.1016/S2542-5196(21)00350-8.
  • Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. 2016. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol. 90(7):1541–1553. doi:10.1007/s00204-016-1736-5.
  • Sturm R. 2020. Modelling the deposition of fine particulate matter (PM2.5) in the human respiratory tract. AME Med J. 5:14–14. doi:10.21037/amj.2020.03.04.
  • Trevisan G, Benemei S, Materazzi S, De Logu F, De Siena G, Fusi C, Fortes Rossato M, Coppi E, Marone IM, Ferreira J, et al. 2016. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain. 139(Pt 5):1361–1377. doi:10.1093/brain/aww038.
  • Undem BJ, Sun H. 2020. Molecular/ionic basis of vagal bronchopulmonary C-fiber activation by inflammatory mediators. Physiology (Bethesda). 35(1):57–68. doi:10.1152/physiol.00014.2019.
  • US EPA. 2019. Integrated Science Assessment for Particulate Matter (Final). EPA/600/R-19/188. 1967p., December; [accessed 2020 March 17]. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534.
  • US EPA. 2020. Review of the national ambient air quality standards for particulate matter (Final action). Fed. Reg. 85(244):82684–82748. 40 CFR 50., December 18.
  • Utell MJ, Frampton MW, Zareba W, Devlin RB, Cascio WE. 2002. Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing. Inhal Toxicol. 14(12):1231–1247. doi:10.1080/08958370290084881.
  • Watkinson WP, Campen MJ, Nolan JP, Costa DL. 2001. Cardiovascular and systemic responses to inhaled pollutants in rodents: effects of ozone and particulate matter. Environ Health Perspect. 109(Suppl. 4):539–546. doi:10.1289/ehp.01109s4539.
  • Weng WH, Hsu CC, Chiang LL, Lin YJ, Lin YS, Su CL. 2013. Role of TRPV1 and P2X receptors in the activation of lung vagal C-fiber afferents by inhaled cigarette smoke in rats. Mol Med Rep. 7(4):1300–1304. doi:10.3892/mmr.2013.1300.
  • Wong SS, Sun NN, Keith I, Kweon CB, Foster DE, Schauer JJ, Witten ML. 2003. Tachykinin substance P signaling involved in diesel exhaust-induced bronchopulmonary neurogenic inflammation in rats. Arch Toxicol. 77(11):638–650. doi:10.1007/s00204-003-0485-4.
  • Xu M, Zhang Y, Wang M, Zhang H, Chen Y, Adcock IM, Chung KF, Mo J, Zhang Y, Li F. 2019. TRPV1 and TRPA1 in lung inflammation and airway hyperresponsiveness induced by fine particulate matter (PM2.5). Oxid Med Cell Longev. 2019:7450151–7450115. doi:10.1155/2019/7450151.
  • Zhu BQ, Parmley WW. 1995. Hemodynamic and vascular effects of active and passive smoking. Am Heart J. 130(6):1270–1275. doi:10.1016/0002-8703(95)90154-x.