1,448
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Conceptual development in early-years computing education: a grounded cognition and action based conceptual framework

&
Pages 485-511 | Received 03 Aug 2021, Accepted 24 Oct 2022, Published online: 11 Nov 2022

References

  • Bakhurst, D., & Shanker, S. G. (2001). Jerome Bruner: Language, culture and self. Sage.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(59), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
  • Barsalou, L. W. (2009). Situating concepts. Cambridge University Press.
  • Barsalou, L. W. (2020). Challenges and opportunities for grounding cognition. Journal of Cognition, 3(1), 1–24. https://doi.org/10.5334/joc.116
  • Barsalou, L. W., Breazeal, C., & Smith, L. B. (2007). Cognition as coordinated non-cognition. Cognitive Processing, 8(2), 79–91. https://doi.org/10.1007/s10339-007-0163-1
  • Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. Symbols, Embodiment, and Meaning, 245–283. https://doi.org/10.1093/acprof:oso/9780199217274.003.0013
  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91. https://doi.org/10.1016/S1364-6613(02)00029-3
  • Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. Grounding cognition: The role of perception and action in. Memory, Language, and Thinking, 129–163.
  • Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers’ misconceptions of basic programming statements. Communications of the ACM, 26(9), 677–679. https://doi.org/10.1145/358172.358408
  • Belenky, D. M., & Nokes, T. J. (2009). Examining the role of manipulatives and metacognition on engagement, learning, and transfer. The Journal of Problem Solving, 2(2), 102–129. https://doi.org/10.7771/1932-6246.1061
  • Bell, T., & Lodi, M. (2019). Constructing computational thinking without using computers. Constructivist Foundations, 14(3), 342–351.
  • Bell, T., & Vahrenhold, J. (2018). Cs unplugged—How is it used, and does it work? In adventures between lower bounds and, In Böckenhauer, H.J., Komm, D., & Unger, W. higher altitudes 497–521. Springer.
  • Boncoddo, R., Dixon, J. A., & Kelley, E. (2010). The emergence of a novel representation from action: Evidence from preschoolers. Developmental Science, 13(2), 370–377. https://doi.org/10.1111/j.1467-7687.2009.00905.x
  • Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. ACM international conference proceeding series, (November):65–72.
  • Campbell, W. J. (2017). ” When Mathematical Activity Moves You”: An Exploration of the Design and Use of Purposefully Embodied Mathematical Activities, Models, Contexts, and Environments. PhD thesis, University of Colorado at Boulder.
  • Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380–400. https://doi.org/10.1037/a0031084
  • Clements, D. H., & Sarama, J. (2012). Learning trajectories in mathematics education, In Lerman, S. Hypothetical learning trajectories, (pp. 81–90). Routledge.
  • CSTA, I. (2011). Operational definition of computational thinking for k-12 education.
  • DiPaolo, E. A. (2010), ”Chapter 3 Overcoming Autopoiesis: An Enactive Detour on the Way from Life to Society”, In R. Magalhães & R. Sanchez (Eds.) Advanced Series in Management (Advanced Series in Management, 6, 43–68. Emerald Group Publishing Limited. https://doi.org/10.1108/S1877-6361(2009)0000006004
  • Di Paolo, E. A Newen, A, Gallagher, S., de Bruin, L. (2018). The enactive conception of life. The Oxford handbook of. Cognition: Embodied, Embedded, Enactive and Extended, 71–94. https://doi.org/10.1093/oxfordhb/9780198735410.013.4
  • Di Paolo, E., Buhrmann, T., & Barandiaran, X. (2017). Sensorimotor life: An enactive proposal. Oxford University Press.
  • Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the kibo robotics kit in preschool classrooms. Computers in the Schools, 33(3), 169–186. https://doi.org/10.1080/07380569.2016.1216251
  • Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202–209. https://doi.org/10.1016/j.tics.2013.03.006
  • Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Designing scratchjr: Support for early childhood learning through computer programming. In Proceedings of the 12th international conference on interaction design and children 1–10.
  • Fodor, J. A. (1983). The modularity of mind. MIT press.
  • Fuchs, T. (2020). The circularity of the embodied mind. Frontiers in. psychology, 1707. https://doi.org/10.3389/fpsyg.2020.01707
  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26(1), 9–25. https://doi.org/10.1007/s10648-014-9249-3
  • Fyfe, E. R., & Nathan, M. J. (2019). Making “concreteness fading” more concrete as a theory of instruction for promoting transfer. Educational Review, 71(4), 403–422. https://doi.org/10.1080/00131911.2018.1424116
  • Gibson, J. J. (2014). The ecological approach to visual perception: Classic edition. Psychology Press.
  • Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, 46(4), 414–466. https://doi.org/10.1016/S0010-0285(02)00519-4
  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The Journal of the Learning Sciences, 14(1), 69–110. https://doi.org/10.1207/s15327809jls1401_4
  • Hayes, J. C., & Kraemer, D. J. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive Research: Principles and Implications, 2(1). https://doi.org/10.1186/s41235-016-0046-z
  • Heft, H. (2020). Ecological psychology and enaction theory: Divergent groundings. Frontiers in Psychology, 11, 991. https://doi.org/10.3389/fpsyg.2020.00991
  • Horn, M., & Bers, M. (2019). Tangible Computing. In S. Fincher & A. Robins (Eds.), The Cambridge Handbook of Computing Education Research, 663–678.
  • Huang, W., Looi, C. K., Barelli, E., Branchetti, L., Satanassi, S., & Tasquier, G. (2019). A critical review of literature on “unplugged” pedagogies in K-12 computer science and computational thinking education. Computer Science Education, 30(1), 1–29. https://doi.org/10.1007/s11191-020-00159-x
  • Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student misconceptions of programming. In proceedings of the 41st ACM technical symposium on computer Science education, 107–111.
  • Kalelioglu, F., & Sentance, S. (2019). Teaching with physical computing in school: The case of the micro: Bit. Education and Information Technologies, 1–27.
  • Kallia, M., & Sentance, S. (2017). Computing teachers’ perspectives on threshold concepts: Functions and procedural abstraction. In proceedings of the 12th workshop on primary and secondaryComputing education, 15–24.
  • Kallia, M., & Sentance, S. (2019). Learning to use functions: The relationship between misconceptions and self-efficacy. In proceedings of the 50th ACM technical symposium on computerScience education, 752–758. https://doi.org/10.1145/3287324.3287377
  • Kallia, M., & Sentance, S. (2021). Threshold concepts, conceptions and skills: Teachers’ experiences with students’ engagement in functions. Journal of Computer Assisted Learning, 37(2), 411–428. https://doi.org/10.1111/jcal.12498
  • Kamina, P., & Iyer, N. (2009). From concrete to abstract: Teaching for transfer of learning when using manipulatives. NERA conference proceedings 2009, 6(December 2017):6.
  • Kosslyn, S. M. (1996). Image and brain: The resolution of the imagery debate. MIT press.
  • Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34. https://doi.org/10.1037/a0021446
  • Kynigos, C. (2015). Constructionism: Theory of learning or theory of design?. In Selected regular lectures from the 12th International Congress on Mathematical Education, 417–438. Cham: Springer.
  • Lakoff, G., & Johnson, M. (1980). The metaphorical structure of the human conceptual system. Cognitive Science, 4(2), 195–208. https://doi.org/10.1207/s15516709cog0402_4
  • Laski, E. V., Jor’dan, J. R., Daoust, C., & Murray, A. K. (2015). What makes mathematics manipulatives effective? Lessons from cognitive science and Montessori education. SAGE Open, 5(2), 215824401558958. https://doi.org/10.1177/2158244015589588
  • Manches, A., & O’malley, C. (2012). Tangibles for learning: A representational analysis of physical manipulation. Personal and Ubiquitous Computing, 16(4), 405–419. https://doi.org/10.1007/s00779-011-0406-0
  • Martin, T. (2009). A theory of physically distributed learning: How external environments and internal states interact in mathematics learning. Child Development Perspectives, 3(3), 140–144. https://doi.org/10.1111/j.1750-8606.2009.00094.x
  • Matheson, H. E., & Barsalou, L. W. (2018). Embodiment and grounding in cognitive neuro- science. Stevens’ handbook of experimental psychology and cognitive. Neuroscience, 3, 1–27. https://doi.org/10.1002/9781119170174.epcn310
  • McGregor, S. L. T. (2020). Conceptual and theoretical papers. In Understanding and Evaluating Research: A Critical Guide, 497–528.
  • Mcneal, G. (2011). Writing theory, conceptual and position articles for publication. In T. S. Rocco, T. Hatcher, & J. W. Creswell (Eds.), The handbook of scholarly writing and publishing (pp. 209–221). ERIC.
  • McNeil, N. M., & Fyfe, E. R. (2012). ” Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22(6), 440–448. https://doi.org/10.1016/j.learninstruc.2012.05.001
  • McNeil, N., & Jarvin, L. (2007). When theories don’t add up: Disentangling he manipulatives debate. Theory into Practice, 46(4), 309–316. https://doi.org/10.1080/00405840701593899
  • Montessori, M. (1959). The absorbent mind. Theosophical Publishing House. https://www.google.co.uk/books/edition/The_Absorbent_Mind/MiCaAwAAQBAJ?hl=en&gbpv=1&dq=The+absorbent+mind.&pg=PR5&printsec=frontcovert
  • Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach mathematics. Educational Studies in Mathematics, 47(2), 175–197. https://doi.org/10.1023/A:1014596316942
  • Peacocke, A. (2021). Mental action. Philosophy Compass, 16(6), e12741. https://doi.org/10.1111/phc3.12741
  • Pouw, W. T., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives: Educational Psychology Review, 26(1), 51–72. https://doi.org/10.1007/s10648-014-9255-5
  • Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A literature review. ACM Transactions on Computing Education(TOCE), 18(1), 1–24. https://doi.org/10.1145/3077618
  • Reed, S. K. (2018). Combining physical, virtual, and mental actions and objects. Educational Psychology Review, 30(3), 1091–1113. https://doi.org/10.1007/s10648-018-9441-y
  • Ruiz, L. M., & Linaza, J. L. (2015). Motor skills, motor competence and children: Bruner’s ideas in the era of embodiment cognition and action. In S. Jerome, Bruner beyond 100, 113–122. Cham: Springer.
  • Sarama, J., & Clements, D. H. (2016). Physical and virtual manipulatives: What is “concrete”? In Moyer-Packenham, P.S. International perspectives on teaching and learning mathematics with virtual manipulatives, (pp. 71–93). Springer.
  • Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27(5), 499–520. https://doi.org/10.1016/0749-596X(88)90022-8
  • Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. University of Southampton (E-prints).
  • Shapiro, L. (2011). Embodied Cognition. London and New York: Routledge.
  • Shipp, N. J., Vallée-Tourangeau, F., & Anthony, S. H. (2018). Concepts and action: Where does the embodiment debate leave us? Psychology of Language and Communication, 22(1), 260–280. https://doi.org/10.2478/plc-2018-0011
  • Shmallo, R., & Ragonis, N. (2021). Understanding the “this” reference in object oriented programming: Misconceptions, conceptions, and teaching recommendations. Education and Information Technologies, 26(1), 733–762. https://doi.org/10.1007/s10639-020-10265-6
  • Sirkiä, T. (2012). Recognizing programming misconceptions. Aalto University, Es po o, Aalto University.
  • Sirkiä, T., & Sorva, J. (2012). Exploring programming misconceptions: An analysis of student mistakes in visual program simulation exercises. In proceedings of the 12th Koli Calling International Conference on ComputingEducation Research, 19–28.
  • Skulmowski, A., & Rey, G. D. (2017). Bodily effort enhances learning and metacognition: Investigating the relation between physical effort and cognition using dual-process models of embodiment. Advances in Cognitive Psychology, 13(1), 3–10. https://doi.org/10.5709/acp-0202-9
  • Skulmowski, A., & Rey, G. D. (2018). Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cognitive Research: Principles and Implications, 3(1). https://doi.org/10.1186/s41235-018-0092-9
  • Smidt, S. (2013). Introducing Bruner: A guide for practitioners and students in early years education. Routledge.
  • Son, J. Y., & Goldstone, R. L. (2009). Contextualization in perspective. Cognition and Instruction, 27(1), 51–89. https://doi.org/10.1080/07370000802584539
  • Sorva, J. (2018). Misconceptions and the beginner programmer. Computer Science Education: Perspectives on Teaching and Learning in School, 171.
  • Soury-Lavergne, S. (2016). Duos of artefacts, connecting technology and manipulatives to enhance mathematical learning. 13th international congress onMathematical Education, 24–31.
  • Sullivan, A., & Bers, M. (2019). Computer science education in early childhood: The case of scratchjr. Journal of Information Technology Education: Innovations in Practice, 18(1), 113–138.
  • Sullivan, A., Elkin, M., & Bers, M. U. (2015). Kibo robot demo: Engaging young children in programming and engineering. In Proceedings of the 14th international conference on interaction designAnd children, 418–421. https://doi.org/10.1145/2771839.2771868
  • Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Nondigital and digital approaches. Cognitive Research: Principles and Implications, 2(1). https://doi.org/10.1186/s41235-017-0053-8
  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT press.
  • Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1(2), 219–247. https://doi.org/10.1515/LANGCOG.2009.011
  • Waite, J. (2017). Pedagogy in teaching computer science in schools: A literature review, Royal Society. https://royalsociety.org/-/media/policy/projects/computing-education/literature-review-pedagogy-in-teaching.pdf
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625–636. https://doi.org/10.3758/BF03196322
  • Yadav, M. S. (2010). The decline of conceptual articles and implications for knowledge development. Journal of Marketing, 74(1), 1–19. https://doi.org/10.1509/jmkg.74.1.1