58
Views
0
CrossRef citations to date
0
Altmetric
Technical Report

Radiation dose estimation with multiple artificial neural networks in dicentric chromosome assay

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 865-874 | Received 11 Jan 2024, Accepted 26 Mar 2024, Published online: 30 Apr 2024

References

  • Ainsbury EA, Higueras M, Puig P, Einbeck J, Samaga D, Barquinero JF, Barrios L, Brzozowska B, Fattibene P, Gregoire E, et al. 2017. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int J Radiat Biol. 93(1):127–135. doi:10.1080/09553002.2016.1227106
  • Boice JD.Jr. 2015. Radiation epidemiology and recent paediatric computed tomography studies. Ann ICRP. 44(1 Suppl):236–248. doi:10.1177/0146645315575877
  • Brenner DJ, Hall EJ. 2012. Cancer risks from CT scans: now we have data, what next? Radiology. 265(2):330–331. doi:10.1148/radiol.12121248
  • Crow EL, Gardner RS. 1959. Confidence intervals for the expectation of a Poisson variable. Biometrika. 46(3–4):441–453. doi:10.2307/2333541
  • Endesfelder D, Kulka U, Einbeck J, Oestreicher U. 2020. Improving the accuracy of dose estimates from automatically scored dicentric chromosomes by accounting for chromosome number. Int J Radiat Biol. 96(12):1571–1584. doi:10.1080/09553002.2020.1829152
  • Guilherme RS, Ayres Meloni VF, Kim CA, Pellegrino R, Takeno SS, Spinner NB, Conlin LK, Christofolini DM, Kulikowski LD, Melaragno MI. 2011. Mechanisms of ring chromosome formation, ring instability and clinical consequences. BMC Med Genet. 12:171. doi:10.1186/1471-2350-12-171
  • Huber D, Voithenberg LV, Kaigala GV. 2018. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from microscale FISH? Micro Nano Eng. 1:15–24. doi:10.1016/j.mne.2018.10.006
  • IAEA. 2011. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Vienna, Austria: EPR-Biodosimetry, Internaional Atomic Energy Agency.
  • Jeong SK, Oh SJ, Kim SH, Jang S, Kang YR, Kim HJ, Kye YU, Lee SH, Lee CG, Park MT, et al. 2023. Dicentric chromosome assay using a deep learning based automated system. Sci Rep. 12(1):22097. doi:10.1038/s41598-022-25856-1
  • Kye YU, Kim HJ, Lee JE, Seo YJ, Kim JK, Jo WS, Lee DY, Kang YR. 2021. Measurement of absorbed dose rate in water phantom maintained at body temperature by 60Co irradiator – comparison of experimental results and Monte Carlo simulation. Nucl Technol Radiat Prot. 36(3):289–293. doi:10.2298/NTRP2103289K
  • Li Y, Knoll JH, Wilkins RC, Flegal FN, Rogan PK. 2016. Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing. Microsc Res Tech. 79(5):393–402. doi:10.1002/jemt.22642
  • Li Y, Shirley BC, Wilkins R, Norton F, Knoll JH, Rogan PK. 2019. Radiation dose estimation by completely automated interpretation of the dicentric chromosome assay. Radiat Prot Dosimetry. 186(1):42–47. doi:10.1093/rpd/ncy282
  • Liu J, Li Y, Wilkins R, Flegal F, Knoll JM, Rogan PK. 2017. Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell. F1000Res. 6:1396. doi:10.12688/f1000research.12226.1
  • Merkle W. 1983. Statistical methods in regression and calibration analysis of chromosome aberration data. Radiat Environ Biophys. 21(3):217–233. doi:10.1007/BF01323412
  • Oestreicher U, Endesfelder D, Gomolka M, Kesminiene A, Lang P, Lindholm C, Rößler U, Samaga D, Kulka U. 2018. Automated scoring of dicentric chromosomes differentiates increased radiation sensitivity of young children after low dose CT exposure in vitro. Int J Radiat Biol. 94(11):1017–1026. doi:10.1080/09553002.2018.1503429
  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 168(1):1–64. doi:10.1667/RR0763.1
  • Rogan PK, Mucaki EJ, Shirley BC, Li Y, Wilkins RC, Norton F, Sevriukova O, Pham ND, Waller E, Knoll JHM, et al. 2021. Automated cytogenetic biodosimetry at population-scale. Radiation. 1(2):79–94. doi:10.3390/radiation1020008
  • Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, et al. 2013. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutat Res. 756(1–2):174–183. doi:10.1016/j.mrgentox.2013.05.013
  • Ryan TL, Escalona MB, Smith TL, Albanese J, Iddins CJ, Balajee AS. 2019. Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications. Mutat Res Genet Toxicol Environ Mutagen. 847:503087. doi:10.1016/j.mrgentox.2019.503087
  • Shen X, Ma T, Li C, Wen C, Wen Z, Zheng J, Zhou Z. 2023. High-precision automatic identification method for dicentric ­chromosome images using two-stage convolutional neural network. Sci Rep. 13(1):2124. doi:10.1038/s41598-023-28456-9
  • Shen X, Qi Y, Ma T, Zhou Z. 2019. A dicentric chromosome identification method based on clustering and watershed algorithm. Sci Rep. 9(1):2285. doi:10.1038/s41598-019-38614-7
  • Shirley BC, Li Y, Knoll JH, Rogan PK. 2017. Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation. J Vis Exp. 127:56245. doi:10.3791/56245
  • Tan M, Le QV. 2019. EfficientNet: rethinking model scaling for convolutional neural networks. arXiv 1905.11946v5. doi:10.48550/arXiv.1905.11946
  • Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, Angelis CD, Eakins J, Monaca SD, Fattibene P, Quattrini MC, et al. 2017. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol. 93(1):65–74. doi:10.1080/09553002.2016.1221545
  • Wadhwa AS, Tyagi N, Chowdhury PR. 2022. Deep learning based ­automatic detection of dicentric chromosome. arXiv 2204.08029. doi:10.48550/arXiv.2204.08029
  • Wang CY, Bochkovskiy A, Liao HM. 2022. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada. p. 7464–7475. doi:10.1109/CVPR52729.2023.00721

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.