578
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SBHSR: single-band super-resolution method for hyperspectral images based on blind degradation and fusion of auxiliary band

, ORCID Icon, ORCID Icon &
Article: 2294901 | Received 21 Aug 2023, Accepted 08 Dec 2023, Published online: 23 Jan 2024

References

  • Agustsson E, Timofte R. 2017. NTIRE 2017 challenge on single image super-resolution: dataset and study. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, p. 1122–1131. doi: 10.1109/CVPRW.2017.150.
  • Bu L, Dai D, Zhang Z, Yang Y, Deng M. 2023. Hyperspectral super-resolution reconstruction network based on hybrid convolution and spectral symmetry preservation. Remote Sens. 15(13):3225. doi: 10.3390/rs15133225.
  • Deng C, Luo X, Wang W. 2022. Multiple frame splicing and degradation learning for hyperspectral imagery super-resolution. IEEE J Sel Top Appl Earth Observat Remote Sens. 15:8389–8401. doi: 10.1109/JSTARS.2022.3207777.
  • Dong C, Loy C, He K, Tang X. 2015. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 38(2):295–307. doi: 10.1109/TPAMI.2015.2439281.
  • Fu J, Wang H, Xie Q, Zhao Q, Meng D, Xu Z. 2022. KXNet: a model-driven deep neural network for blind super-resolution. Eur Conf Comput Vis. p. 235–253. doi: 10.1007/978-3-031-19800-7_14.
  • Gao L, Li J, Zheng K, Jia X. 2023. Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 61:1–17. doi: 10.1109/TGRS.2023.3267890.
  • Gu J, Lu H, Zuo W, Dong C. 2019. Blind super-resolution with iterative kernel correction. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, p. 1604–1613. doi: 10.1109/CVPR.2019.00170.
  • Girshick R. 2015. Fast R-CNN. IEEE international conference on computer vision (ICCV). Santiago, Chile, p. 1440–1448. doi: 10.1109/ICCV.2015.169.
  • He K, Fan H, Wu Y, Xie S, Girshick R. 2020. Momentum contrast for unsupervised visual representation learning. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, p. 9726–9735. doi: 10.1109/CVPR42600.2020.00975.
  • Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. Comp Sci. doi: 10.48550/arXiv.1412.6980.
  • Lim B, Son S, Kim H, Nah S, Lee KM. 2017. Enhanced deep residual networks for single image super-resolution. IEEE conference on computer vision and pattern recognition workshops (CVPRW). Honolulu, HI, USA, p. 1132–1140. doi: 10.1109/CVPRW.2017.151.
  • Li J, Hong D, Gao L, Yao J, Zheng K, Zhang B, Chanussot J. 2022. Deep learning in multimodal remote sensing data fusion: a comprehensive review. Int J Appl Earth Obs Geoinf. 112:102926. doi: 10.1016/j.jag.2022.102926.
  • Li Y, Zhang L, Dingl C, Wei W, Zhang Y. 2018. Single hyperspectral image super-resolution with grouped deep recursive residual network. IEEE fourth international conference on multimedia big data (BigMM), Xi’an, China, 2018, p. 1–4. doi: 10.1109/BigMM.2018.8499097.
  • Lu L, Li W, Tao X, Lu J, Jia J. 2021. MASA-SR: matching acceleration and spatial adaptation for reference-based image super-resolution. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Nashville, TN, USA, p. 6364–6373. doi: 10.1109/CVPR46437.2021.00630.
  • Liebel L, Körner M. 2016. Single-image super resolution for multispectral remote sensing data using convolutional neural networks. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLI-B3:883–890. doi: 10.5194/isprs-archives-XLI-B3-883-2016.
  • Loncan L, de Almeida LB, Bioucas-Dias JM, Briottet X, Chanussot J, Dobigeon N, Fabre S, Liao W, Licciardi GA, Simoes M, et al. 2015. Hyperspectral pansharpening: a review. IEEE Geosci Remote Sens Mag. 3(3):27–46. doi: 10.1109/MGRS.2015.2440094.
  • Licciardi G, Villa A, Khan MM, Chanussot J. 2012. Image fusion and spectral unmixing of hyperspectral images for spatial improvement of classification maps. IEEE International Geoscience and Remote Sensing Symposium. p. 7290–7293. doi: 10.1109/IGARSS.2012.6351978.
  • Mittal A, Soundararajan R, Bovik AC. 2013. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett. 20(3):209–212. doi: 10.1109/LSP.2012.2227726.
  • Mohammadzadeh A, Tavakoli A, Zoej MJV. 2006. Road extraction based on fuzzy logic and mathematical morphology from pan-sharpened ikonos images. Photogram Rec. 21(113):44–60. doi: 10.1111/j.1477-9730.2006.00353.x.
  • Rasti B, Hong D, Hang R, Ghamisi P, Kang X, Chanussot J, Benediktsson JA. 2020. Feature extraction for hyperspectral imagery: the evolution from shallow to deep: overview and toolbox. IEEE Geosci Remote Sens Mag. 8(4):60–88. doi: 10.1109/MGRS.2020.2979764.
  • Venkatanath N, Praneeth D. 2015. Blind image quality evaluation using perception based features. Twenty first national conference on communications (NCC), Mumbai, India, p. 1–6. doi: 10.1109/NCC.2015.7084843.
  • Woo S, Park J, Lee J-Y, Kweon IS. 2018. CBAM: convolutional block attention module. Comp Vis ECCV Lect Notes Comp Sci. 11211:3–19. doi: 10.1007/978-3-030-01234-2_1.
  • Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. 2020. ECA-Net: efficient channel attention for deep convolutional neural networks. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, p. 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
  • Wang Q, Li Q, Li X. 2021a. Hyperspectral image superresolution using spectrum and feature context. IEEE Trans Ind Electron. 68(11):11276–11285. doi: 10.1109/TIE.2020.3038096.
  • Wang T, Xie J, Sun W, Yan Q, Chen Q. 2021b. Dual-camera super-resolution with aligned attention modules. IEEE/CVF international conference on computer vision (ICCV), Montreal, QC, Canada, p. 1981–1990. doi: 10.1109/ICCV48922.2021.00201.
  • Wang L, Wang Y, Dong X, Xu Q, Yang J, An W, Guo Y. 2021c. Unsupervised degradation representation learning for blind super-resolution. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Nashville, TN, USA, p. 10576–10585. doi: 10.1109/CVPR46437.2021.01044.
  • Wang X, Xie L, Dong C, Shan Y. 2021d. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. IEEE/CVF international conference on computer vision workshops (ICCVW), Montreal, BC, Canada, p. 1905–1914. doi: 10.1109/ICCVW54120.2021.00217.
  • Yuan Y, Zheng X, Lu X. 2017. Hyperspectral image superresolution by transfer learning. IEEE J Sel Top Appl Earth Observations Remote Sens. 10(5):1963–1974. doi: 10.1109/JSTARS.2017.2655112.
  • Zhang M, Sun X, Zhu Q, Zheng G. 2021. A survey of hyperspectral image super-resolution technology. IEEE international geoscience and remote sensing symposium IGARSS. Brussels, Belgium, p. 4476–4479. doi: 10.1109/IGARSS47720.2021.9554409.
  • Zheng K, Gao L, Liao W, Hong D, Zhang B, Cui X, Chanussot J. 2021. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution. IEEE Trans Geosci Remote Sens. 59(3):2487–2502. doi: 10.1109/TGRS.2020.3006534.
  • Zheng K, Gao L, Hong D, Zhang B, Chanussot J. 2022. NonRegSRNet: A nonrigid registration hyperspectral super-resolution network. IEEE Trans Geosci Remote Sens. 60:1–16. doi: 10.1109/TGRS.2021.3135501.