61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lipase-catalyzed synthesis of laurate esters from puerarin and its β-D-fructofuranosyl-(2→6)-puerarin derivative

, , , , , & show all
Received 25 Sep 2023, Accepted 09 Mar 2024, Published online: 31 Mar 2024

References

  • Bacanli M, Aydin S, Başaran AA, Başaran N. 2018.A phytoestrogen puerarin and its health effects. In: Ronald Ross, Watson Victor R. Preedy, Sherma Zibadi, editors. Chapter 33, in Polyphenols: Prevention and Treatment of Human Disease. Second edition Netherlands: Elsevier Inc. 425–431. doi: 10.1016/B978-0-12-813008-7.00033-3.
  • Campos-Valdez AR, Casas-Godoy L, Sandoval G, Hernández L, Sassaki GL, Alencar de Menezes LR, Campos-Terán J, Reyes-Duarte D, Arrizon J. 2022. Regioselective synthesis of 6’’-O-lauroyl-1-kestose and 6’’’-O-lauroylnystose by sequential enzymatic reactions of transfructosylation and acylation. Biocatal Biotransformation. 40(2):133–143. doi: 10.1080/10242422.2021.1952192.
  • Céliz G, Martearena MR, Scaroni E, Daz M. 2012. Kinetic study of the alkyl flavonoid ester prunin 6’-O-laurate synthesis in acetone catalysed by immobilised Candida antarctica lipase B. Biochem Eng J. 69:69–74. doi: 10.1016/j.bej.2012.08.008.
  • Chebil L, Anthoni J, Humeau C, Gerardin C, Engasser J-M, Ghoul M. 2007. Enzymatic acylation of flavonoids : Effect of the nature of the substrate, origin of lipase, and regioselectivity. J Agric Food Chem. 55(23):9496–9502. doi: 10.1021/jf071943j.
  • De Araújo MEMB, Franco YEM, Messias MCF, Longato GB, Pamphile JA, Carvalho PDO. 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 83(1-02):7–22. doi: 10.1055/s-0042-118883.
  • Feng Z-Q, Wang Y-Y, Guo Z-R, Chu F-M, Sun P-Y. 2010. The synthesis of puerarin derivatives and their protective effect on the myocardial ischemia and reperfusion injury. J Asian Nat Prod Res. 12(10):843–850. doi: 10.1080/10286020.2010.505563.
  • Gupta A, Kagliwal LD, Singhal RS. 2013. Biotransformation of polyphenols for improved bioavailability and processing stability. 1st ed. Netherlands: Elsevier Inc. doi: 10.1016/B978-0-12-410540-9.00004-1.
  • Kontogianni A, Skouridou V, Sereti V, Stamatis H, Kolisis FN. 2003. Lipase-catalyzed esterification of rutin and naringin with fatty acids of medium carbon chain. J Mol Catal B Enzym. 21(1–2):59–62. doi: 10.1016/S1381-1177(02)00139-X.
  • Laguerre M, López Giraldo LJ, Lecomte J, Figueroa-Espinoza MC, Baréa B, Weiss J, Decker EA, Villeneuve P. 2010. Relationship between hydrophobicity and antioxidant ability of “phenolipids” in emulsion: a parabolic effect of the chain length of rosmarinate esters. J Agric Food Chem. 58(5):2869–2876. doi: 10.1021/jf904119v.
  • Li X-F, Yuan T, Xu H, Xin X, Zhao G, Wu H, Xiao X. 2019. Whole-cell catalytic synthesis of puerarin monoesters and analysis of their antioxidant activities. J Agric Food Chem. 67(1):299–307. doi: 10.1021/acs.jafc.8b05805.
  • Mo L, Zhao G, Li X, Xiao X, He N, Xu H, Yu Y. 2022. Green synthesis of puerarin acid esters and their oral absorption evaluation in vivo. J Drug Deliv Sci Technol. 67:102882. doi: 10.1016/j.jddst.2021.102882.
  • Mo L, Zhao GL, Li XF, Xiao XL, He N, Ma JJ, Yu YG. 2021. Evaluation of the digestion and transport profiles and potential immunocompetence of puerarin and its acylated derivatives. Food Funct. 12(13):5949–5958. doi: 10.1039/d1fo00555c.
  • Murakami T, Nishikawa Y, Ando T. 1960. Studies on the constituents of japanese and Chinese crude crugs. IV. On the constituents of Pueraria root. Chem Pharm Bull. 8(8):688–691. doi: 10.1248/cpb.8.688.
  • Nakajima N, Ishihara K, Itoh T, Furuya T, Hamada H. 1999. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments. J Biosci Bioeng. 87(1):105–107. doi: 10.1016/S1389-1723(99)80017-6.
  • Nakamura K, Komatsu K, Hattori M, Iwashima M. 2013. Enzymatic cleavage of the C-glucosidic bond of puerarin by three proteins, Mn2+, and oxidized form of nicotinamide adenine dinucleotide. Biol Pharm Bull. 36(4):635–640. doi: 10.1248/bpb.b12-01011.
  • Núñez-López G, Herrera-González A, Hernández L, Amaya-Delgado L, Sandoval G, Gschaedler A, Arrizon J, Remaud-Simeon M, Morel S. 2019. Fructosylation of phenolic compounds by levansucrase from Gluconacetobacter diazotrophicus. Enzyme Microb Technol. 122:19–25. doi: 10.1016/j.enzmictec.2018.12.004.
  • Ohshima Y, Okuyama T, Takahashi K, Takizawa T, Shibata S. 1988. Isolation and high performance liquid chromatography (HPLC) of isoflavonoids from the Pueraria root. Planta Med. 54(3):250–254. doi: 10.1055/s-2006-962420.
  • Plou FJ, Cruces MA, Ferrer M, Fuentes G, Pastor E, Bernabé M, Christensen M, Comelles F, Parra JL, Ballesteros A. 2002. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol. 96(1):55–66. doi: 10.1016/S0168-1656(02)00037-8.
  • Porter WL, Black ED, Drolet AM. 1989. Use of polyamide oxidative fluorescence test on lipid emulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. J Agric Food Chem. 37(3):615–624. doi: 10.1021/jf00087a009.
  • Reetz MT. 2013. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc. 135(34):12480–12496. doi: 10.1021/ja405051f.
  • Smolskait L, Venskutonis PR, Talou T. 2015. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT - Food Sci Technol. 60(1):462–471. doi: 10.1016/j.lwt.2014.08.007.
  • Stevenson DE, Wibisono R, Jensen DJ, Stanley RA, Cooney JM. 2006. Direct acylation of flavonoid glycosides with phenolic acids catalysed by Candida antarctica lipase B (Novozym 435®). Enzyme Microb Technol. 39(6):1236–1241. doi: 10.1016/j.enzmictec.2006.03.006.
  • Teng R-W, Bui T-KA, McManus D, Armstrong D, Mau S-L, Bacic A. 2005. Regioselective acylation of several polyhydroxylated natural compounds by Candida antarctica lipase B. Biocatal. Biotransformation. 23(2):109–116. doi: 10.1080/1024220500132508.
  • Wong KH, Razmovski-Naumovski V, Li KM, Li GQ, Chan K. 2013. Differentiation of Pueraria lobata and Pueraria thomsonii using partial least square discriminant analysis (PLS-DA). J Pharm Biomed Anal. 84:5–13. doi: 10.1016/j.jpba.2013.05.040.
  • Xiao C, Li J, Dong X, He X, Niu X, Liu C, Zhong G, Bauer R, Yang D, Lu A. 2011. Anti-oxidative and TNF-α suppressive activities of puerarin derivative (4AC) in RAW264.7 cells and collagen-induced arthritic rats. Eur J Pharmacol. 666(1-3):242–250. doi: 10.1016/j.ejphar.2011.05.061.
  • Yu L, Gao F, Yang L, Xu L, Wang Z, Ye H. 2012. Biotransformation of puerarin into puerarin-6″-O-phosphate by Bacillus cereus. J Ind Microbiol Biotechnol. 39(2):299–305. doi: 10.1007/s10295-011-1031-7.
  • Zhang L. 2019. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 26(1):860–869. doi: 10.1080/10717544.2019.1660732.
  • Zhang S, Wang J, Zhao H, Luo Y. 2018. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ. 4(4):174–184. doi: 10.4103/bc.bc_13_18.
  • Zhou Y-X, Zhang H, Peng C. 2014. Puerarin: a review of pharmacological effects. Phytother Res. 28(7):961–975. doi: 10.1002/ptr.5083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.